Department of Biology, Brandeis University, Waltham, MA 02454, United States of America.
Department of Biology, Brandeis University, Waltham, MA 02454, United States of America.
Mol Cell Neurosci. 2024 Mar;128:103920. doi: 10.1016/j.mcn.2024.103920. Epub 2024 Feb 6.
Synapse formation in the mammalian brain is a complex and dynamic process requiring coordinated function of dozens of molecular families such as cell adhesion molecules (CAMs) and ligand-receptor pairs (Ephs/Ephrins, Neuroligins/Neurexins, Semaphorins/Plexins). Due to the large number of molecular players and possible functional redundancies within gene families, it is challenging to determine the precise synaptogenic roles of individual molecules, which is key to understanding the consequences of mutations in these genes for brain function. Furthermore, few molecules are known to exclusively regulate either GABAergic or glutamatergic synapses, and cell and molecular mechanisms underlying GABAergic synapse formation in particular are not thoroughly understood. We previously demonstrated that Semaphorin-4D (Sema4D) regulates GABAergic synapse development in the mammalian hippocampus while having no effect on glutamatergic synapse development, and this effect occurs through binding to its high affinity receptor, Plexin-B1. In addition, we demonstrated that RNAi-mediated Plexin-B2 knock-down decreases GABAergic synapse density suggesting that both receptors function in this process. Here, we perform a structure-function study of the Plexin-B1 and Plexin-B2 receptors to identify the protein domains in each receptor which are required for its synaptogenic function. Further, we examine whether Plexin-B2 is required in the presynaptic neuron, the postsynaptic neuron, or both to regulate GABAergic synapse formation. Our data reveal that Plexin-B1 and Plexin-B2 function non-redundantly to regulate GABAergic synapse formation and suggest that the transmembrane domain may underlie functional distinctions. We also provide evidence that Plexin-B2 expression in presynaptic GABAergic interneurons, as well as postsynaptic pyramidal cells, regulates GABAergic synapse formation in hippocampus. These findings lay the groundwork for future investigations into the precise signaling pathways required for synapse formation downstream of Plexin-B receptor signaling.
哺乳动物大脑中的突触形成是一个复杂而动态的过程,需要几十个分子家族的协调功能,如细胞粘附分子(CAMs)和配体-受体对(Ephs/Ephrins、Neuroligins/Neurexins、Semaphorins/Plexins)。由于基因家族内分子成员的数量庞大且可能存在功能冗余,因此确定单个分子的确切突触形成作用具有挑战性,这对于理解这些基因的突变对大脑功能的影响至关重要。此外,已知很少有分子专门调节 GABA 能或谷氨酸能突触,并且 GABA 能突触形成的细胞和分子机制尚未得到充分理解。我们之前证明 Sema4D 调节哺乳动物海马中的 GABA 能突触发育,而对谷氨酸能突触发育没有影响,这种作用是通过与其高亲和力受体 Plexin-B1 结合来实现的。此外,我们证明 RNAi 介导的 Plexin-B2 敲低会减少 GABA 能突触密度,这表明这两种受体都在这个过程中发挥作用。在这里,我们对 Plexin-B1 和 Plexin-B2 受体进行结构-功能研究,以确定每个受体中参与其突触形成功能的蛋白结构域。此外,我们还研究了 Plexin-B2 是否需要在突触前神经元、突触后神经元或两者中发挥作用来调节 GABA 能突触形成。我们的数据表明 Plexin-B1 和 Plexin-B2 非冗余地发挥作用以调节 GABA 能突触形成,并表明跨膜结构域可能是功能差异的基础。我们还提供了证据表明,突触前 GABA 能中间神经元和突触后锥体神经元中的 Plexin-B2 表达调节海马中的 GABA 能突触形成。这些发现为未来研究 Plexin-B 受体信号下游的突触形成所需的精确信号通路奠定了基础。