Suppr超能文献

个体化检测前列腺癌中 TMPRSS2-ERG 融合状态:基于排名的定性转录组特征。

Individualized detection of TMPRSS2-ERG fusion status in prostate cancer: a rank-based qualitative transcriptome signature.

机构信息

School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou, China.

School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou, China.

出版信息

World J Surg Oncol. 2024 Feb 9;22(1):49. doi: 10.1186/s12957-024-03314-8.

Abstract

BACKGROUND

TMPRSS2-ERG (T2E) fusion is highly related to aggressive clinical features in prostate cancer (PC), which guides individual therapy. However, current fusion prediction tools lacked enough accuracy and biomarkers were unable to be applied to individuals across different platforms due to their quantitative nature. This study aims to identify a transcriptome signature to detect the T2E fusion status of PC at the individual level.

METHODS

Based on 272 high-throughput mRNA expression profiles from the Sboner dataset, we developed a rank-based algorithm to identify a qualitative signature to detect T2E fusion in PC. The signature was validated in 1223 samples from three external datasets (Setlur, Clarissa, and TCGA).

RESULTS

A signature, composed of five mRNAs coupled to ERG (five ERG-mRNA pairs, 5-ERG-mRPs), was developed to distinguish T2E fusion status in PC. 5-ERG-mRPs reached 84.56% accuracy in Sboner dataset, which was verified in Setlur dataset (n = 455, accuracy = 82.20%) and Clarissa dataset (n = 118, accuracy = 81.36%). Besides, for 495 samples from TCGA, two subtypes classified by 5-ERG-mRPs showed a higher level of significance in various T2E fusion features than subtypes obtained through current fusion prediction tools, such as STAR-Fusion.

CONCLUSIONS

Overall, 5-ERG-mRPs can robustly detect T2E fusion in PC at the individual level, which can be used on any gene measurement platform without specific normalization procedures. Hence, 5-ERG-mRPs may serve as an auxiliary tool for PC patient management.

摘要

背景

TMPRSS2-ERG(T2E)融合与前列腺癌(PC)的侵袭性临床特征高度相关,可指导个体化治疗。然而,目前的融合预测工具准确性不足,且由于其定量性质,生物标志物无法应用于不同平台的个体。本研究旨在确定一种转录组特征,以在个体水平上检测 PC 的 T2E 融合状态。

方法

基于 Sboner 数据集的 272 个高通量 mRNA 表达谱,我们开发了一种基于排名的算法,以确定一种定性特征来检测 PC 中的 T2E 融合。该特征在三个外部数据集(Setlur、Clarissa 和 TCGA)的 1223 个样本中进行了验证。

结果

开发了一个由五个与 ERG 相关的 mRNA 组成的特征(五个 ERG-mRNA 对,5-ERG-mRPs),用于区分 PC 中的 T2E 融合状态。在 Sboner 数据集(n=455,准确率=82.20%)和 Clarissa 数据集(n=118,准确率=81.36%)中验证了 5-ERG-mRPs 的准确性为 84.56%。此外,对于来自 TCGA 的 495 个样本,通过 5-ERG-mRPs 分类的两个亚型在各种 T2E 融合特征中比通过当前融合预测工具(如 STAR-Fusion)获得的亚型具有更高的显著性。

结论

总体而言,5-ERG-mRPs 可以在个体水平上稳健地检测 PC 中的 T2E 融合,无需特定的归一化程序即可在任何基因测量平台上使用。因此,5-ERG-mRPs 可以作为 PC 患者管理的辅助工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96df/10854045/8b109da9f015/12957_2024_3314_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验