Alamgholiloo Hassan, Asgari Esrafil, Sheikhmohammadi Amir, Ghasemian Naser, Hashemzadeh Bayram, Nourmoradi Heshmatollah
Department of Environmental Health Engineering, School of Health, Khoy University of Medical Sciences, Khoy, Iran.
Department of Chemical Engineering, University of Bonab, Bonab, Iran.
Sci Rep. 2024 Feb 8;14(1):3277. doi: 10.1038/s41598-024-53805-7.
Nitrogen oxides (NOx) are one of the growing air pollutants in industrial countries, and their emissions are regulated by stringent legislation. Therefore, the design of the catalyst comprised of metal oxides and ZIFs a potential solution for improving selective catalytic reduction (SCR) of NOx. Here, an efficient strategy was described to fabricate Co-ZIF/WO heterostructures for SCR of NOx. First, WO nanostructures were fabricated by the solvothermal method, and subsequently epitaxial growth of ZIF-67 on the metal oxide surface to create a new type of semiconductor Co-ZIF/WO heterostructures. The obtained heterostructures were systemically characterized by wide-angle XRD, FESEM, UV DRS, FT-IR, AFM, and TEM spectroscopies. The Co-ZIF/WO heterostructures shift the temperature corresponding to the maximum conversion around 50 °C towards lower temperatures. The maximum conversion is substantially enhanced from 55% at 400 °C to 78% at 350 °C. The enhanced activity is attributed to better interaction and synergic effect of WO incorporated into ZIF-67 and also the electron transfer facility between the WO and Co species in Co-ZIF/WO heterostructures. Moreover, Co-ZIF/WO results in a distinct effect on the production of carbon monoxide (CO) in the product gas stream. The current study highlights some of the challenges in the development of semiconductor-based heterostructures for a decrease in air pollution.
氮氧化物(NOx)是工业化国家中日益增多的空气污染物之一,其排放受到严格立法的监管。因此,由金属氧化物和沸石咪唑酯骨架材料(ZIFs)组成的催化剂设计是改善氮氧化物选择性催化还原(SCR)的一种潜在解决方案。在此,描述了一种制备用于氮氧化物SCR的Co-ZIF/WO异质结构的有效策略。首先,通过溶剂热法制备WO纳米结构,随后在金属氧化物表面外延生长ZIF-67以形成新型半导体Co-ZIF/WO异质结构。通过广角XRD、场发射扫描电子显微镜(FESEM)、紫外可见漫反射光谱(UV DRS)、傅里叶变换红外光谱(FT-IR)、原子力显微镜(AFM)和透射电子显微镜(TEM)光谱对所得异质结构进行了系统表征。Co-ZIF/WO异质结构使对应于最大转化率的温度向低温方向移动了约50°C。最大转化率从400°C时的55%大幅提高到350°C时的78%。活性增强归因于掺入ZIF-67中的WO的更好相互作用和协同效应,以及Co-ZIF/WO异质结构中WO和Co物种之间的电子转移便利性。此外,Co-ZIF/WO对产物气流中一氧化碳(CO)的产生有明显影响。当前研究突出了开发基于半导体的异质结构以减少空气污染方面的一些挑战。