Sun Jiehuan, Lee Kuang-Yao
Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois Chicago, Chicago, Illinois, USA.
Department of Statistics, Operations, and Data Science, Temple University, Philadelphia, Pennsylvania, USA.
Stat Med. 2024 Apr 15;43(8):1564-1576. doi: 10.1002/sim.10023. Epub 2024 Feb 8.
Point process data have become increasingly popular these days. For example, many of the data captured in electronic health records (EHR) are in the format of point process data. It is of great interest to study the association between a point process predictor and a scalar response using generalized functional linear regression models. Various generalized functional linear regression models have been developed under different settings in the past decades. However, existing methods can only deal with functional or longitudinal predictors, not point process predictors. In this article, we propose a novel generalized functional linear regression model for a point process predictor. Our proposed model is based on the joint modeling framework, where we adopt a log-Gaussian Cox process model for the point process predictor and a generalized linear regression model for the outcome. We also develop a new algorithm for fast model estimation based on the Gaussian variational approximation method. We conduct extensive simulation studies to evaluate the performance of our proposed method and compare it to competing methods. The performance of our proposed method is further demonstrated on an EHR dataset of patients admitted into the intensive care units of the Beth Israel Deaconess Medical Center between 2001 and 2008.
如今,点过程数据越来越受欢迎。例如,电子健康记录(EHR)中捕获的许多数据都是点过程数据的格式。使用广义函数线性回归模型研究点过程预测器与标量响应之间的关联非常有趣。在过去几十年中,在不同的设置下已经开发了各种广义函数线性回归模型。然而,现有方法只能处理函数型或纵向预测器,而不能处理点过程预测器。在本文中,我们提出了一种针对点过程预测器的新型广义函数线性回归模型。我们提出的模型基于联合建模框架,其中我们采用对数高斯考克斯过程模型来处理点过程预测器,并采用广义线性回归模型来处理结果。我们还基于高斯变分近似方法开发了一种用于快速模型估计的新算法。我们进行了广泛的模拟研究,以评估我们提出的方法的性能,并将其与竞争方法进行比较。我们提出的方法的性能在2001年至2008年期间入住贝斯以色列女执事医疗中心重症监护病房的患者的电子健康记录数据集上得到了进一步证明。