Hirata Kazushige, Takahara Aoi, Suzuki Satoshi, Murakami Shumei, Kawaji Kumi, Nishiyama Akie, Sasano Mina, Shoji-Ueno Mariko, Usui Emiko, Murayama Kazutaka, Hayashi Hironori, Oishi Shinya, Kodama Eiichi N
Department of Infectious Diseases, Tohoku University Graduate School of Medicine, 2-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8575, Japan.
Department of Clinical Laboratory Medicine, Tohoku University Hospital, 1-1, Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan.
iScience. 2024 Jan 17;27(2):108961. doi: 10.1016/j.isci.2024.108961. eCollection 2024 Feb 16.
Despite effective vaccines, measles virus (MeV) outbreaks occur sporadically. Therefore, developing anti-MeV agents remains important for suppressing MeV infections. We previously designed peptide-based MeV fusion inhibitors, M1 and M2, that target MeV class I fusion protein (F protein). Here, we developed a novel fusion inhibitor, MEK35, that exerts potent activity against M1/M2-resistant MeV variants. Comparing MEK35 to M1 derivatives revealed that combining disordered and helical elements was essential for overcoming M1/M2 resistance. Moreover, we propose a three-step antiviral process for peptide-based fusion inhibitors: (i) disordered peptides interact with F protein; (ii) the peptides adopt a partial helical conformation and bind to F protein through hydrophobic interactions; and (iii) subsequent interactions involving the disordered region of the peptides afford a peptide-F protein with a high-affinity peptide-F protein interaction. An M1-resistant substitution blocks the second step. These results should aid the development of novel viral fusion inhibitors targeting class I F protein.
尽管有有效的疫苗,但麻疹病毒(MeV)仍会偶尔爆发。因此,开发抗MeV药物对于抑制MeV感染仍然很重要。我们之前设计了基于肽的MeV融合抑制剂M1和M2,它们靶向MeV I类融合蛋白(F蛋白)。在此,我们开发了一种新型融合抑制剂MEK35,它对M1/M2耐药的MeV变体具有强大的活性。将MEK35与M1衍生物进行比较发现,结合无序和螺旋元件对于克服M1/M2耐药性至关重要。此外,我们提出了基于肽的融合抑制剂的三步抗病毒过程:(i)无序肽与F蛋白相互作用;(ii)肽形成部分螺旋构象并通过疏水相互作用与F蛋白结合;(iii)随后涉及肽无序区域的相互作用产生具有高亲和力肽-F蛋白相互作用的肽-F蛋白。M1耐药性替代阻断了第二步。这些结果应有助于开发针对I类F蛋白的新型病毒融合抑制剂。