Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States.
Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, Utrecht3584 CH, The Netherlands.
J Am Chem Soc. 2024 Feb 21;146(7):4421-4432. doi: 10.1021/jacs.3c09266. Epub 2024 Feb 9.
Lipids adhere to membrane proteins to stimulate or suppress molecular and ionic transport and signal transduction. Yet, the molecular details of lipid-protein interaction and their functional impact are poorly characterized. Here we combine NMR, coarse-grained molecular dynamics (CGMD), and functional assays to reveal classic cooperativity in the binding and subsequent activation of a bacterial inward rectifier potassium (Kir) channel by phosphatidylglycerol (PG), a common component of many membranes. Past studies of lipid activation of Kir channels focused primarily on phosphatidylinositol bisphosphate, a relatively rare signaling lipid that is tightly regulated in space and time. We use solid-state NMR to quantify the binding of unmodified C-PG to the K channel KirBac1.1 in liposomes. This specific lipid-protein interaction has a dissociation constant () of ∼7 mol percentage PG (Χ) with positive cooperativity ( = 3.8) and approaches saturation near 20% Χ. Liposomal flux assays show that K flux also increases with PG in a cooperative manner with an EC of ∼20% Χ, within the physiological range. Further quantitative fitting of these data reveals that PG acts as a partial (80%) agonist with fivefold K flux amplification. Comparisons of NMR chemical shift perturbation and CGMD simulations at different Χ confirm the direct interaction of PG with key residues, several of which would not be accessible to lipid headgroups in the closed state of the channel. Allosteric regulation by a common lipid is directly relevant to the activation mechanisms of several human ion channels. This study highlights the role of concentration-dependent lipid-protein interactions and tightly controlled protein allostery in the activation and regulation of ion channels.
脂质与膜蛋白结合,以刺激或抑制分子和离子转运以及信号转导。然而,脂质-蛋白相互作用的分子细节及其功能影响仍知之甚少。在这里,我们结合 NMR、粗粒化分子动力学 (CGMD) 和功能测定来揭示磷脂酰甘油 (PG) 与细菌内向整流钾 (Kir) 通道结合和随后激活的经典协同性,PG 是许多膜的常见成分。过去关于脂质激活 Kir 通道的研究主要集中在磷脂酰肌醇双磷酸上,这是一种相对罕见的信号脂质,在空间和时间上受到严格调控。我们使用固态 NMR 来定量测定未修饰的 C-PG 在脂质体中与 K 通道 KirBac1.1 的结合。这种特定的脂质-蛋白相互作用的解离常数 (Kd) 约为 7 mol% PG (Χ),具有正协同性 ( = 3.8),并在接近 20% Χ 时接近饱和。脂质体通量测定表明,K 通量也以协同方式随 PG 增加,EC 值约为 20% Χ,处于生理范围内。对这些数据进行进一步的定量拟合表明,PG 作为部分 (80%) 激动剂,使 K 通量放大五倍。不同 Χ 下的 NMR 化学位移扰动和 CGMD 模拟的比较证实了 PG 与关键残基的直接相互作用,其中一些残基在通道的关闭状态下无法与脂质头部基团接触。常见脂质的变构调节与几种人类离子通道的激活机制直接相关。本研究强调了浓度依赖性脂质-蛋白相互作用和严格控制的蛋白变构在离子通道激活和调节中的作用。