Suppr超能文献

细胞质亚基间相互作用处的构象变化控制着钾离子通道的门控。

Conformational changes at cytoplasmic intersubunit interactions control Kir channel gating.

作者信息

Wang Shizhen, Borschel William F, Heyman Sarah, Hsu Phillip, Nichols Colin G

机构信息

From the Department of Cell Biology and Physiology and the Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri 63110.

From the Department of Cell Biology and Physiology and the Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri 63110

出版信息

J Biol Chem. 2017 Jun 16;292(24):10087-10096. doi: 10.1074/jbc.M117.785154. Epub 2017 Apr 26.

Abstract

The defining structural feature of inward-rectifier potassium (Kir) channels is the unique Kir cytoplasmic domain. Recently we showed that salt bridges located at the cytoplasmic domain subunit interfaces (CD-Is) of eukaryotic Kir channels control channel gating via stability of a novel inactivated closed state. The cytoplasmic domains of prokaryotic and eukaryotic Kir channels show similar conformational rearrangements to the common gating ligand, phosphatidylinositol bisphosphate (PIP), although these exhibit opposite coupling to opening and closing transitions. In Kir2.1, mutation of one of these CD-I salt bridge residues (R204A) reduces apparent PIP sensitivity of channel activity, and here we show that Ala or Cys substitutions of the functionally equivalent residue (Arg-165) in the prokaryotic Kir channel KirBac1.1 also significantly decrease sensitivity of the channel to PIP (by 5-30-fold). To further understand the structural basis of CD-I control of Kir channel gating, we examined the effect of the R165A mutation on PIP-induced changes in channel function and conformation. Single-channel analyses indicated that the R165A mutation disrupts the characteristic long interburst closed state of reconstituted KirBac1.1 in giant liposomes, resulting in a higher open probability due to more frequent opening bursts. Intramolecular FRET measurements indicate that, relative to wild-type channels, the R165A mutation results in splaying of the cytoplasmic domains away from the central axis and that PIP essentially induces opposite motions of the major β-sheet in this channel mutant. We conclude that the removal of stabilizing CD-I salt bridges results in a collapsed state of the Kir domain.

摘要

内向整流钾(Kir)通道的决定性结构特征是其独特的Kir胞质结构域。最近我们发现,位于真核生物Kir通道胞质结构域亚基界面(CD-Is)的盐桥通过一种新型失活关闭状态的稳定性来控制通道门控。尽管原核生物和真核生物Kir通道的胞质结构域与常见门控配体磷脂酰肌醇二磷酸(PIP)呈现相反的开放和关闭转换耦合,但它们对PIP表现出相似的构象重排。在Kir2.1中,这些CD-I盐桥残基之一(R204A)的突变降低了通道活性的表观PIP敏感性,并且我们在此表明,原核生物Kir通道KirBac1.1中功能等效残基(Arg-165)的丙氨酸或半胱氨酸取代也显著降低了通道对PIP的敏感性(降低了5至30倍)。为了进一步了解CD-I对Kir通道门控的结构基础,我们研究了R165A突变对PIP诱导的通道功能和构象变化的影响。单通道分析表明,R165A突变破坏了在巨型脂质体中重组KirBac1.1的特征性长爆发间关闭状态,由于开放爆发更频繁,导致开放概率更高。分子内荧光共振能量转移测量表明,相对于野生型通道,R165A突变导致胞质结构域从中心轴向外张开,并且PIP在该通道突变体中基本上诱导主要β-折叠的相反运动。我们得出结论,稳定的CD-I盐桥的去除导致Kir结构域的塌陷状态。

相似文献

1
Conformational changes at cytoplasmic intersubunit interactions control Kir channel gating.
J Biol Chem. 2017 Jun 16;292(24):10087-10096. doi: 10.1074/jbc.M117.785154. Epub 2017 Apr 26.
3
Control of Kir channel gating by cytoplasmic domain interface interactions.
J Gen Physiol. 2017 May 1;149(5):561-576. doi: 10.1085/jgp.201611719. Epub 2017 Apr 7.
4
Conformational changes upon gating of KirBac1.1 into an open-activated state revealed by solid-state NMR and functional assays.
Proc Natl Acad Sci U S A. 2020 Feb 11;117(6):2938-2947. doi: 10.1073/pnas.1915010117. Epub 2020 Jan 24.
5
PIP(2)-binding site in Kir channels: definition by multiscale biomolecular simulations.
Biochemistry. 2009 Nov 24;48(46):10926-33. doi: 10.1021/bi9013193.
6
Crystal structure of the potassium channel KirBac1.1 in the closed state.
Science. 2003 Jun 20;300(5627):1922-6. doi: 10.1126/science.1085028. Epub 2003 May 8.
7
Control of KirBac3.1 potassium channel gating at the interface between cytoplasmic domains.
J Biol Chem. 2014 Jan 3;289(1):143-51. doi: 10.1074/jbc.M113.501833. Epub 2013 Nov 20.
9
Direct modulation of Kir channel gating by membrane phosphatidylinositol 4,5-bisphosphate.
J Biol Chem. 2005 Oct 28;280(43):35785-8. doi: 10.1074/jbc.C500355200. Epub 2005 Sep 6.
10
Structural rearrangements underlying ligand-gating in Kir channels.
Nat Commun. 2012 Jan 10;3:617. doi: 10.1038/ncomms1625.

引用本文的文献

1
Inwardly rectifying potassium channels: Critical insights for insect species and Apis mellifera.
Channels (Austin). 2025 Dec;19(1):2529250. doi: 10.1080/19336950.2025.2529250. Epub 2025 Jul 10.
4
The unique structural characteristics of the Kir 7.1 inward rectifier potassium channel: a novel player in energy homeostasis control.
Am J Physiol Cell Physiol. 2023 Mar 1;324(3):C694-C706. doi: 10.1152/ajpcell.00335.2022. Epub 2023 Jan 30.
5
Unexpected Gating Behaviour of an Engineered Potassium Channel Kir.
Front Mol Biosci. 2021 Jun 10;8:691901. doi: 10.3389/fmolb.2021.691901. eCollection 2021.
6
G protein βγ subunits play a critical role in the actions of amphetamine.
Transl Psychiatry. 2019 Feb 11;9(1):81. doi: 10.1038/s41398-019-0387-8.

本文引用的文献

1
Control of Kir channel gating by cytoplasmic domain interface interactions.
J Gen Physiol. 2017 May 1;149(5):561-576. doi: 10.1085/jgp.201611719. Epub 2017 Apr 7.
2
Structural basis of control of inward rectifier Kir2 channel gating by bulk anionic phospholipids.
J Gen Physiol. 2016 Sep;148(3):227-37. doi: 10.1085/jgp.201611616. Epub 2016 Aug 15.
3
Structural dynamics of potassium-channel gating revealed by single-molecule FRET.
Nat Struct Mol Biol. 2016 Jan;23(1):31-36. doi: 10.1038/nsmb.3138. Epub 2015 Dec 7.
4
Structural mechanism of glutamate receptor activation and desensitization.
Nature. 2014 Oct 16;514(7522):328-34. doi: 10.1038/nature13603. Epub 2014 Aug 3.
5
Structure and dynamics of AMPA receptor GluA2 in resting, pre-open, and desensitized states.
Cell. 2014 Aug 14;158(4):778-792. doi: 10.1016/j.cell.2014.07.023. Epub 2014 Aug 7.
6
X-ray structure of the mammalian GIRK2-βγ G-protein complex.
Nature. 2013 Jun 13;498(7453):190-7. doi: 10.1038/nature12241. Epub 2013 Jun 5.
7
KATP channels and cardiovascular disease: suddenly a syndrome.
Circ Res. 2013 Mar 29;112(7):1059-72. doi: 10.1161/CIRCRESAHA.112.300514.
8
Functional insights from glutamate receptor ion channel structures.
Annu Rev Physiol. 2013;75:313-37. doi: 10.1146/annurev-physiol-030212-183711. Epub 2012 Sep 4.
9
Structural rearrangements underlying ligand-gating in Kir channels.
Nat Commun. 2012 Jan 10;3:617. doi: 10.1038/ncomms1625.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验