Suppr超能文献

眼科人工智能算法光学相干层析成像数据库:综述。

Ophthalmology Optical Coherence Tomography Databases for Artificial Intelligence Algorithm: A Review.

机构信息

Laboratory for Computational Physiology, Massachusetts Institute of Technology, Cambridge, MA, USA.

Telematics Department, University of Cauca, Popayan, Colombia.

出版信息

Semin Ophthalmol. 2024 Apr;39(3):193-200. doi: 10.1080/08820538.2024.2308248. Epub 2024 Feb 9.

Abstract

BACKGROUND

Imaging plays a pivotal role in eye assessment. With the introduction of advanced machine learning and artificial intelligence (AI), the focus has shifted to imaging datasets in ophthalmology. While disparities and health inequalities hidden within data are well-documented, the ophthalmology field faces specific challenges to the creation and maintenance of datasets. Optical Coherence Tomography (OCT) is useful for the diagnosis and monitoring of retinal pathologies, making it valuable for AI applications. This review aims to identify and compare the landscape of publicly available optical coherence tomography databases for AI applications.

METHODS

We conducted a literature review on OCT and AI articles with publicly accessible datasets, using PubMed, Scopus, and Web of Science databases. The review retrieved 183 articles, and after full-text analysis, 50 articles were included. From the included articles were identified 8 publicly available OCT datasets, focusing on patient demographics and clinical details for thorough assessment and comparison.

RESULTS

The resulting datasets encompass 154,313 images collected from Spectralis, Cirrus HD, Topcon 3D, and Bioptigen devices. These datasets included normal exams, age-related macular degeneration, and diabetic maculopathy, among others. Comprehensive demographic information is available in one dataset and the USA is the most represented population.

DISCUSSION

Current publicly available OCT databases for AI applications exhibit limitations, stemming from their non-representative nature and the lack of comprehensive demographic information. Limited datasets hamper research and equitable AI development. To promote equitable AI algorithmic development in ophthalmology, there is a need for the creation and dissemination of more representative datasets.

摘要

背景

成像在眼部评估中起着关键作用。随着先进的机器学习和人工智能(AI)的引入,焦点已经转移到眼科的成像数据集上。虽然数据中隐藏着差异和健康不平等现象已经得到充分记录,但眼科领域在创建和维护数据集方面面临着具体的挑战。光学相干断层扫描(OCT)可用于视网膜病变的诊断和监测,因此非常适合 AI 应用。本综述旨在确定和比较可用于 AI 应用的公开可用的 OCT 数据库。

方法

我们使用 PubMed、Scopus 和 Web of Science 数据库对具有公开可访问数据集的 OCT 和 AI 文章进行了文献回顾。该综述检索到 183 篇文章,经过全文分析,纳入了 50 篇文章。从纳入的文章中确定了 8 个公开可用的 OCT 数据集,重点关注患者的人口统计学和临床细节,以进行全面评估和比较。

结果

这些数据集涵盖了来自 Spectralis、Cirrus HD、Topcon 3D 和 Bioptigen 设备的 154313 张图像。这些数据集包括正常检查、年龄相关性黄斑变性和糖尿病性黄斑病变等。一个数据集提供了全面的人口统计学信息,美国是最具代表性的人群。

讨论

目前可用于 AI 应用的公开 OCT 数据库存在局限性,源于其非代表性和缺乏全面的人口统计学信息。有限的数据集阻碍了研究和公平的 AI 发展。为了促进眼科中公平的 AI 算法发展,需要创建和传播更具代表性的数据集。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验