Suppr超能文献

利用共焦显微镜图像人工智能衍生的形态计量参数评估 Fuchs 角膜内皮营养不良。

Assessing Fuchs Corneal Endothelial Dystrophy Using Artificial Intelligence-Derived Morphometric Parameters From Specular Microscopy Images.

机构信息

Centro Oftalmológico Virgilio Galvis, Floridablanca, Colombia.

Fundación Oftalmológica de Santander FOSCAL, Floridablanca, Colombia.

出版信息

Cornea. 2024 Sep 1;43(9):1080-1087. doi: 10.1097/ICO.0000000000003460. Epub 2024 Feb 9.

Abstract

PURPOSE

The aim of this study was to evaluate the efficacy of artificial intelligence-derived morphometric parameters in characterizing Fuchs corneal endothelial dystrophy (FECD) from specular microscopy images.

METHODS

This cross-sectional study recruited patients diagnosed with FECD, who underwent ophthalmologic evaluations, including slit-lamp examinations and corneal endothelial assessments using specular microscopy. The modified Krachmer grading scale was used for clinical FECD classification. The images were processed using a convolutional neural network for segmentation and morphometric parameter estimation, including effective endothelial cell density, guttae area ratio, coefficient of variation of size, and hexagonality. A mixed-effects model was used to assess relationships between the FECD clinical classification and measured parameters.

RESULTS

Of 52 patients (104 eyes) recruited, 76 eyes were analyzed because of the exclusion of 26 eyes for poor quality retroillumination photographs. The study revealed significant discrepancies between artificial intelligence-based and built-in microscope software cell density measurements (1322 ± 489 cells/mm 2 vs. 2216 ± 509 cells/mm 2 , P < 0.001). In the central region, guttae area ratio showed the strongest correlation with modified Krachmer grades (0.60, P < 0.001). In peripheral areas, only guttae area ratio in the inferior region exhibited a marginally significant positive correlation (0.29, P < 0.05).

CONCLUSIONS

This study confirms the utility of CNNs for precise FECD evaluation through specular microscopy. Guttae area ratio emerges as a compelling morphometric parameter aligning closely with modified Krachmer clinical grading. These findings set the stage for future large-scale studies, with potential applications in the assessment of irreversible corneal edema risk after phacoemulsification in FECD patients, as well as in monitoring novel FECD therapies.

摘要

目的

本研究旨在评估从共焦显微镜图像中提取人工智能衍生形态参数在特征化 Fuchs 角膜内皮营养不良(FECD)中的疗效。

方法

这是一项横断面研究,招募了被诊断为 FECD 的患者,他们接受了眼科评估,包括裂隙灯检查和共焦显微镜下的角膜内皮评估。改良的 Krachmer 分级量表用于临床 FECD 分类。使用卷积神经网络对图像进行处理,以进行分割和形态参数估计,包括有效内皮细胞密度、疱区比、大小变异系数和六边形。采用混合效应模型评估 FECD 临床分类与测量参数之间的关系。

结果

在纳入的 52 名患者(104 只眼)中,由于 26 只眼的后反射照片质量差而被排除在外,仅对 76 只眼进行了分析。研究显示,基于人工智能的和内置显微镜软件的细胞密度测量值之间存在显著差异(1322±489 个细胞/mm 2 与 2216±509 个细胞/mm 2 ,P<0.001)。在中央区域,疱区比与改良 Krachmer 分级的相关性最强(0.60,P<0.001)。在周边区域,仅下区域的疱区比呈边缘显著正相关(0.29,P<0.05)。

结论

本研究证实了卷积神经网络通过共焦显微镜进行精确 FECD 评估的效用。疱区比是一种与改良 Krachmer 临床分级紧密相关的有吸引力的形态参数。这些发现为未来的大规模研究奠定了基础,可能应用于评估 FECD 患者白内障乳化术后不可逆性角膜水肿的风险,以及监测新型 FECD 治疗方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b270/11296282/9633f94225a1/cornea-43-1080-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验