Departament de Genètica i Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (ICM-CSIC), 08003 Barcelona, Spain.
Departament de Genètica i Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Institut d'Ecologia Aquàtica, Facultat de Ciències, Universitat de Girona, 17003 Girona, Spain.
J Hazard Mater. 2024 Apr 5;467:133685. doi: 10.1016/j.jhazmat.2024.133685. Epub 2024 Feb 3.
Marine sediments polluted from anthropogenic activities can be major reservoirs of toxic mercury species. Some microorganisms in these environments have the capacity to detoxify these pollutants, by using the mer operon. In this study, we characterized microbial cultures isolated from polluted marine sediments growing under diverse environmental conditions of salinity, oxygen availability and mercury tolerance. Specific growth rates and percentage of mercury removal were measured in batch cultures for a selection of isolates. A culture affiliated with Pseudomonas putida (MERCC_1942), which contained a mer operon as well as other genes related to metal resistances, was selected as the best candidate for mercury elimination. In order to optimize mercury detoxification conditions for strain MERCC_1942 in continuous culture, three different dilution rates were tested in bioreactors until the cultures achieved steady state, and they were subsequently exposed to a mercury spike; after 24 h, strain MERCC_1942 removed up to 76% of the total mercury. Moreover, when adapted to high growth rates in bioreactors, this strain exhibited the highest specific mercury detoxification rates. Finally, an immobilization protocol using the sol-gel technology was optimized. These results highlight that some sediment bacteria show capacity to detoxify mercury and could be used for bioremediation applications.
受人为活动污染的海洋沉积物可能是有毒汞物种的主要储存库。这些环境中的一些微生物具有通过使用 mer 操纵子解毒这些污染物的能力。在这项研究中,我们对从受污染的海洋沉积物中分离出来的微生物培养物进行了表征,这些培养物在不同的盐度、氧气可用性和汞耐受性环境条件下生长。选择了一批分离物在分批培养中测量特定生长速率和汞去除百分比。与 Pseudomonas putida (MERCC_1942) 相关的培养物含有 mer 操纵子以及其他与金属抗性相关的基因,被选为汞消除的最佳候选物。为了在连续培养中优化菌株 MERCC_1942 的汞解毒条件,在生物反应器中测试了三种不同的稀释率,直到培养物达到稳定状态,然后将其暴露于汞冲击;24 小时后,菌株 MERCC_1942 去除了高达 76%的总汞。此外,当适应生物反应器中的高生长速率时,该菌株表现出最高的特定汞解毒速率。最后,优化了使用溶胶-凝胶技术的固定化方案。这些结果表明,一些沉积物细菌具有解毒汞的能力,可用于生物修复应用。