Suppr超能文献

消除厌氧消化废水中的铜障碍因子以实现增值利用:土著细菌群落的性能和抗阻机制。

Elimination of copper obstacle factor in anaerobic digestion effluent for value-added utilization: Performance and resistance mechanisms of indigenous bacterial consortium.

机构信息

State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, PR China.

State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang, Jiangxi 330047, PR China.

出版信息

Water Res. 2024 Mar 15;252:121217. doi: 10.1016/j.watres.2024.121217. Epub 2024 Jan 31.

Abstract

The presence of excessive residual Cu(II), a high-risk heavy metal with potential toxicity and biomagnification property, substantially impede the value-added utilization of anaerobic digestion effluent (ADE). This study adapted indigenous bacterial consortium (IBCs) to eliminate Cu(II) from ADE, and their performances and resistance mechanisms against Cu(II) were analyzed. Results demonstrated that when the Cu(II) exposure concentration exceeded 7.5 mg/L, the biomass of IBCs decreased significantly, cells produced a substantial amount of ROS and EPS, at which time the intracellular Cu(II) content gradually decreased, while Cu(II) accumulation within the EPS substantially increased. The combined features of a high PN/PS ratio, a reversed Zeta potential gradient, and abundant functional groups within EPS collectively render EPS a primary diffusion barrier against Cu(II) toxicity. Mutual physiological and metagenomics analyses reveal that EPS synthesis and secretion, efflux, DNA repair along with coordination between each other were the primary resistance mechanisms of IBCs against Cu(II) toxicity. Furthermore, IBCs exhibited enhanced resistance by enriching bacteria carrying relevant resistance genes. Continuous pretreatment of actual ADE with IBCs at a 10-day hydraulic retention time (HRT) efficiently eliminated Cu(II) concentration from 5.01 mg/L to ∼0.68 mg/L by day 2. This elimination remained stable for the following 8 days of operation, further validated their good Cu(II) elimination stability. Notably, supplementing IBCs with 200 mg/L polymerized ferrous sulfate significantly enhanced their settling performance. By elucidating the intricate interplay of Cu(II) toxicity and IBC resistance mechanisms, this study provides a theoretical foundation for eliminating heavy metal barriers in ADE treatment.

摘要

过量残留的 Cu(II)(一种具有潜在毒性和生物放大特性的高危重金属)的存在,极大地阻碍了厌氧消化出水(ADE)的增值利用。本研究采用本土细菌群落(IBCs)来去除 ADE 中的 Cu(II),并分析了它们对 Cu(II)的性能和抗性机制。结果表明,当 Cu(II)暴露浓度超过 7.5mg/L 时,IBCs 的生物量显著下降,细胞产生大量的 ROS 和 EPS,此时细胞内的 Cu(II)含量逐渐降低,而 EPS 中 Cu(II)的积累量显著增加。EPS 具有高 PN/PS 比、反转的 Zeta 电位梯度和丰富的功能基团等特点,使其成为 Cu(II)毒性的主要扩散屏障。相互的生理和宏基因组学分析表明,EPS 的合成和分泌、外排、DNA 修复以及它们之间的协调是 IBCs 抵抗 Cu(II)毒性的主要抗性机制。此外,IBCs 通过富集携带相关抗性基因的细菌来提高其抗性。以 10 天水力停留时间(HRT)连续预处理实际 ADE,IBCs 可将 Cu(II)浓度从 5.01mg/L 有效降低至约 0.68mg/L,第 2 天达到峰值,随后 8 天的运行保持稳定,进一步验证了其良好的 Cu(II)去除稳定性。值得注意的是,向 IBCs 中添加 200mg/L 聚合硫酸亚铁可显著提高其沉淀性能。本研究通过阐明 Cu(II)毒性与 IBC 抗性机制之间的复杂相互作用,为去除 ADE 处理中的重金属障碍提供了理论基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验