Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Aragón, Spain; CIBER-BBN, ISCIII, Madrid, Spain; Aragón Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Aragón, Spain.
Department of Mechanical Engineering, University College London, London, United Kingdom.
Comput Biol Med. 2024 Mar;171:108044. doi: 10.1016/j.compbiomed.2024.108044. Epub 2024 Feb 1.
Engineered heart tissues (EHTs) built from human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) showed promising results for cardiac function restoration following myocardial infarction. Nevertheless, human iPSC-CMs have longer action potential and lower cell-to-cell coupling than adult-like CMs. These immature electrophysiological properties favor arrhythmias due to the generation of electrophysiological gradients when hiPSC-CMs are injected in the cardiac tissue. Culturing hiPSC-CMs on three-dimensional (3D) scaffolds can promote their maturation and influence their alignment. However, it is still uncertain how on-scaffold culturing influences the overall electrophysiology of the in vitro and implanted EHTs, as it requires expensive and time consuming experimentation. Here, we computationally investigated the impact of the scaffold design on the EHT electrical depolarization and repolarization before and after engraftment on infarcted tissue. We first acquired and processed electrical recordings from in vitro EHTs, which we used to calibrate the modeling and simulation of in silico EHTs to replicate experimental outcomes. Next, we built in silico EHT models for a range of scaffold pore sizes, shapes (square, rectangular, auxetic, hexagonal) and thicknesses. In this setup, we found that scaffolds made of small (0.2 mm), elongated (30° half-angle) hexagons led to faster EHT activation and better mimicked the cardiac anisotropy. The scaffold thickness had a marginal role on the not engrafted EHT electrophysiology. Moreover, EHT engraftment on infarcted tissue showed that the EHT conductivity should be at least 5% of that in healthy tissue for bidirectional EHT-myocardium electrical propagation. For conductivities above such threshold, the scaffold made of small elongated hexagons led to the lowest activation time (AT) in the coupled EHT-myocardium. If the EHT conductivity was further increased and the hiPSC-CMs were uniformly oriented parallel to the epicardial cells, the total AT and the repolarization time gradient decreased substantially, thus minimizing the likelihood for arrhythmias after EHT transplantation.
由人诱导多能干细胞衍生的心肌细胞(hiPSC-CMs)构建的工程心脏组织(EHTs)在心肌梗死后恢复心脏功能方面显示出有前景的结果。然而,人类 iPSC-CMs 的动作电位比成人样 CMs 更长,细胞间耦合更低。这些不成熟的电生理特性有利于心律失常的发生,因为当 hiPSC-CMs 注入心脏组织时会产生电生理梯度。在三维(3D)支架上培养 hiPSC-CMs 可以促进其成熟并影响其排列。然而,目前尚不确定支架培养如何影响体外和植入的 EHT 的整体电生理学,因为这需要昂贵且耗时的实验。在这里,我们通过计算研究了支架设计对植入前和植入后 EHT 电去极化和复极化的影响。我们首先从体外 EHT 中获取和处理电记录,并用其校准建模和模拟,以复制实验结果。接下来,我们为一系列支架孔径、形状(方形、矩形、超弹性、六边形)和厚度构建了计算 EHT 模型。在这种设置下,我们发现由小(0.2 毫米)、拉长(30°半角)六边形组成的支架可加快 EHT 激活并更好地模拟心脏各向异性。支架厚度对未植入 EHT 的电生理学作用不大。此外,EHT 在梗塞组织上的植入表明,EHT 传导性至少应为健康组织的 5%,以实现 EHT-心肌的双向电传播。对于高于此阈值的电导率,由小而拉长的六边形制成的支架可在耦合的 EHT-心肌中导致最短的激活时间(AT)。如果进一步增加 EHT 传导性并且 hiPSC-CMs 平行于心外膜细胞均匀定向,则总 AT 和复极化时间梯度会大大降低,从而最大限度地减少 EHT 移植后心律失常的可能性。