Suppr超能文献

人诱导多能干细胞衍生的心肌细胞/成纤维细胞工程心脏组织模型的构建

Generation of a human iPSC-derived cardiomyocyte/fibroblast engineered heart tissue model.

作者信息

Cumberland Max J, Euchner Jonas, Azad Amar J, T N Vo Nguyen, Kirchhof Paulus, Holmes Andrew P, Denning Chris, Gehmlich Katja

机构信息

Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, England, B15 2TT, UK.

Centre of Membrane Proteins and Receptors, University of Birmingham, Birmingham, England, B15 2TT, UK.

出版信息

F1000Res. 2024 Feb 12;12:1224. doi: 10.12688/f1000research.139482.1. eCollection 2023.

Abstract

Animal models have proven integral to broadening our understanding of complex cardiac diseases but have been hampered by significant species-dependent differences in cellular physiology. Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have shown great promise in the modelling of cardiac diseases despite limitations in functional and structural maturity. 3D stem cell-derived cardiac models represent a step towards mimicking the intricate microenvironment present in the heart as an model. Incorporation of non-myocyte cell types, such as cardiac fibroblasts, into engineered heart tissue models (EHTs) can help better recapitulate the cell-to-cell and cell-to-matrix interactions present in the human myocardium. Integration of human-induced pluripotent stem cell-derived cardiac fibroblasts (hiPSC-CFs) and hiPSC-CM into EHT models enables the generation of a genetically homogeneous modelling system capable of exploring the abstruse structural and electrophysiological interplay present in cardiac pathophysiology. Furthermore, the construction of more physiologically relevant 3D cardiac models offers great potential in the replacement of animals in heart disease research. Here we describe efficient and reproducible protocols for the differentiation of hiPSC-CMs and hiPSC-CFs and their subsequent assimilation into EHTs. The resultant EHT consists of longitudinally arranged iPSC-CMs, incorporated alongside hiPSC-CFs. EHTs with both hiPSC-CMs and hiPSC-CFs exhibit slower beating frequencies and enhanced contractile force compared to those composed of hiPSC-CMs alone. The modified protocol may help better characterise the interplay between different cell types in the myocardium and their contribution to structural remodelling and cardiac fibrosis.

摘要

动物模型已被证明对于拓宽我们对复杂心脏疾病的理解不可或缺,但由于细胞生理学存在显著的物种依赖性差异而受到阻碍。尽管在功能和结构成熟度方面存在局限性,但人诱导多能干细胞衍生的心肌细胞(hiPSC-CMs)在心脏疾病建模中显示出了巨大的潜力。3D干细胞衍生的心脏模型是迈向模拟心脏中存在的复杂微环境的重要一步。将非心肌细胞类型(如心脏成纤维细胞)纳入工程心脏组织模型(EHTs)中,可以帮助更好地重现人类心肌中存在的细胞间和细胞与基质间的相互作用。将人诱导多能干细胞衍生的心脏成纤维细胞(hiPSC-CFs)和hiPSC-CM整合到EHT模型中,能够生成一个基因同质的建模系统,该系统能够探索心脏病理生理学中存在的复杂结构和电生理相互作用。此外,构建更具生理相关性的3D心脏模型在心脏病研究中替代动物方面具有巨大潜力。在此,我们描述了hiPSC-CMs和hiPSC-CFs分化及其随后整合到EHTs中的高效且可重复的方案。所得的EHT由纵向排列的iPSC-CMs组成,并与hiPSC-CFs一起整合。与仅由hiPSC-CMs组成的EHT相比,同时含有hiPSC-CMs和hiPSC-CFs的EHT表现出较慢的搏动频率和增强的收缩力。修改后的方案可能有助于更好地表征心肌中不同细胞类型之间的相互作用及其对结构重塑和心脏纤维化的贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45d3/10904980/f5f03e3bf70b/f1000research-12-162401-g0000.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验