Karlsruhe Institute of Technology (KIT), Institute of Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe, Germany; DSP Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany.
DSP Development, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany.
J Chromatogr A. 2024 Mar 15;1718:464706. doi: 10.1016/j.chroma.2024.464706. Epub 2024 Feb 5.
Multimodal chromatography has emerged as a powerful method for the purification of therapeutic antibodies. However, process development of this separation technique remains challenging because of an intricate and molecule-specific interaction towards multimodal ligands, leading to time-consuming and costly experimental optimization. This study presents a multiscale modeling approach to predict the multimodal chromatographic behavior of therapeutic antibodies based on their sequence information. Linear gradient elution (LGE) experiments were performed on an anionic multimodal resin for 59 full-length antibodies, including five different antibody formats at pH 5.0, 6.0, and 7.0 that were used for parameter determination of a linear adsorption model at low loading density conditions. Quantitative structure-property relationship (QSPR) modeling was utilized to correlate the adsorption parameters with up to 1374 global and local physicochemical descriptors calculated from antibody homology models. The final QSPR models employed less than eight descriptors per model and demonstrated high training accuracy (R² > 0.93) and reasonable test set prediction accuracy (Q² > 0.83) for the adsorption parameters. Model evaluation revealed the significance of electrostatic interaction and hydrophobicity in determining the chromatographic behavior of antibodies, as well as the importance of the HFR3 region in antibody binding to the multimodal resin. Chromatographic simulations using the predicted adsorption parameters showed good agreement with the experimental data for the vast majority of antibodies not employed during the model training. The results of this study demonstrate the potential of sequence-based prediction for determining chromatographic behavior in therapeutic antibody purification. This approach leads to more efficient and cost-effective process development, providing a valuable tool for the biopharmaceutical industry.
多模式色谱法已成为一种强大的方法,可用于治疗性抗体的纯化。然而,由于多模式配体与分子之间复杂且特定的相互作用,这种分离技术的工艺开发仍然具有挑战性,导致需要耗时且昂贵的实验优化。本研究提出了一种多尺度建模方法,可基于治疗性抗体的序列信息预测其多模式色谱行为。在 pH 5.0、6.0 和 7.0 下,针对 59 种全长抗体进行了阴离子多模式树脂的线性梯度洗脱(LGE)实验,其中包括五种不同的抗体形式,用于在低加载密度条件下确定线性吸附模型的参数。定量构效关系(QSPR)建模用于将吸附参数与多达 1374 个全局和局部物理化学描述符相关联,这些描述符是从抗体同源模型计算得出的。最终的 QSPR 模型每个模型使用不到 8 个描述符,表现出高的训练准确性(R²>0.93)和合理的测试集预测准确性(Q²>0.83),适用于吸附参数。模型评估表明,静电相互作用和疏水性在确定抗体的色谱行为方面具有重要意义,同时 HFR3 区域在抗体与多模式树脂的结合中也具有重要意义。使用预测的吸附参数进行色谱模拟,对于大多数未用于模型训练的抗体,与实验数据具有很好的一致性。本研究的结果表明,基于序列的预测在确定治疗性抗体纯化中的色谱行为方面具有潜力。这种方法可实现更高效和更具成本效益的工艺开发,为生物制药行业提供了有价值的工具。