Keulen Daphne, Neijenhuis Tim, Lazopoulou Adamantia, Disela Roxana, Geldhof Geoffroy, Le Bussy Olivier, Klijn Marieke E, Ottens Marcel
Department of Biotechnology, Delft University of Technology, Delft, The Netherlands.
GSK, Technical Research & Development - Microbial Drug Substance, Rixensart, Belgium.
Biotechnol Prog. 2025 Jan-Feb;41(1):e3505. doi: 10.1002/btpr.3505. Epub 2024 Sep 29.
Optimizing a biopharmaceutical chromatographic purification process is currently the greatest challenge during process development. A lack of process understanding calls for extensive experimental efforts in pursuit of an optimal process. In silico techniques, such as mechanistic or data driven modeling, enhance the understanding, allowing more cost-effective and time efficient process optimization. This work presents a modeling strategy integrating quantitative structure property relationship (QSPR) models and chromatographic mechanistic models (MM) to optimize a cation exchange (CEX) capture step, limiting experiments. In QSPR, structural characteristics obtained from the protein structure are used to describe physicochemical behavior. This QSPR information can be applied in MM to predict the chromatogram and optimize the entire process. To validate this approach, retention profiles of six proteins were determined experimentally from mixtures, at different pH (3.5, 4.3, 5.0, and 7.0). Four proteins at different pH's were used to train QSPR models predicting the retention volumes and characteristic charge, subsequently the equilibrium constant was determined. For an unseen protein knowing only the protein structure, the retention peak difference between the modeled and experimental peaks was 0.2% relative to the gradient length (60 column volume). Next, the CEX capture step was optimized, demonstrating a consistent result in both the experimental and QSPR-based methods. The impact of model parameter confidence on the final optimization revealed two viable process conditions, one of which is similar to the optimization achieved using experimentally obtained parameters. The multiscale modeling approach reduces the required experimental effort by identification of initial process conditions, which can be optimized.
在工艺开发过程中,优化生物制药色谱纯化工艺是目前最大的挑战。由于缺乏对工艺的理解,需要进行大量实验来寻求最佳工艺。计算机模拟技术,如机理模型或数据驱动模型,有助于加深理解,从而实现更具成本效益和时间效率的工艺优化。本文提出了一种将定量结构-性质关系(QSPR)模型和色谱机理模型(MM)相结合的建模策略,以优化阳离子交换(CEX)捕获步骤,减少实验次数。在QSPR中,从蛋白质结构获得的结构特征用于描述物理化学行为。这些QSPR信息可应用于MM中,以预测色谱图并优化整个工艺。为了验证该方法,通过实验测定了六种蛋白质在不同pH值(3.5、4.3、5.0和7.0)下混合物中的保留谱。使用四种蛋白质在不同pH值下的数据训练QSPR模型,以预测保留体积和特征电荷,随后确定平衡常数。对于仅知道蛋白质结构的未知蛋白质,建模峰与实验峰之间的保留峰差异相对于梯度长度(60个柱体积)为0.2%。接下来,对CEX捕获步骤进行了优化,实验方法和基于QSPR的方法都得到了一致的结果。模型参数置信度对最终优化的影响揭示了两种可行的工艺条件,其中一种与使用实验获得的参数实现的优化相似。这种多尺度建模方法通过识别可优化的初始工艺条件,减少了所需的实验工作量。