Suppr超能文献

使用新冠疫情前后对比的方法,在两项长期实验中评估大流行风险对合作和社会规范的影响。

Assessing the effects of pandemic risk on cooperation and social norms using a before-after Covid-19 comparison in two long-term experiments.

机构信息

Institute of Cognitive Sciences and Technologies, Italian National Research Council, Rome, Italy.

Institute for Futures Studies, Stockholm, Sweden.

出版信息

Sci Rep. 2024 Feb 9;14(1):3356. doi: 10.1038/s41598-024-53427-z.

Abstract

How does threat from disease shape our cooperative actions and the social norms that guide such behaviour? To study these questions, we draw on a collective-risk social dilemma experiment that we ran before the emergence of the Covid-19 pandemic (Wave 1, 2018) and compare this to its exact replication, sampling from the same population, that we conducted during the first wave of the pandemic (Wave 2, 2020). Tightness-looseness theory predicts and evidence generally supports that both cooperation and accompanying social norms should increase, yet, we mostly did not find this. Contributions, the probability of reaching the threshold (cooperation), and the contents of the social norm (how much people should contribute) remained similar across the waves, although the strength of these social norms were slightly greater in Wave 2. We also study whether the results from Wave 1 that should not be affected by the pandemic-the relationship between social norms and cooperation and specific behavioural types-replicate in Wave 2 and find that these results generally hold. Overall, our work demonstrates that social norms are important drivers of cooperation, yet, communicable diseases, at least in the short term, have little or no effects on either.

摘要

疾病威胁如何塑造我们的合作行为和指导这些行为的社会规范?为了研究这些问题,我们借鉴了在新冠疫情爆发前进行的集体风险社会困境实验(第 1 波,2018 年),并将其与我们在疫情第一波期间(第 2 波,2020 年)对同一人群进行的完全复制进行了比较。紧密-宽松理论预测并普遍支持合作以及伴随而来的社会规范都应该增加,但我们并没有发现这一点。在两波实验中,贡献、达到阈值(合作)的概率以及社会规范的内容(人们应该贡献多少)保持相似,尽管在第 2 波中这些社会规范的强度略高。我们还研究了第 1 波中不受疫情影响的结果——社会规范与合作以及特定行为类型之间的关系——是否会在第 2 波中复制,发现这些结果总体上是成立的。总的来说,我们的工作表明,社会规范是合作的重要驱动因素,但至少在短期内,传染性疾病几乎没有或没有对其产生影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f241/10858192/682eb50a6bc0/41598_2024_53427_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验