文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

肠道微生物组-代谢组相互作用预测宿主状况。

Gut microbiome-metabolome interactions predict host condition.

机构信息

Department of Mathematics, Bar-Ilan University, Ramat Gan, 52900, Israel.

The Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.

出版信息

Microbiome. 2024 Feb 10;12(1):24. doi: 10.1186/s40168-023-01737-1.


DOI:10.1186/s40168-023-01737-1
PMID:38336867
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10858481/
Abstract

BACKGROUND: The effect of microbes on their human host is often mediated through changes in metabolite concentrations. As such, multiple tools have been proposed to predict metabolite concentrations from microbial taxa frequencies. Such tools typically fail to capture the dependence of the microbiome-metabolite relation on the environment. RESULTS: We propose to treat the microbiome-metabolome relation as the equilibrium of a complex interaction and to relate the host condition to a latent representation of the interaction between the log concentration of the metabolome and the log frequencies of the microbiome. We develop LOCATE (Latent variables Of miCrobiome And meTabolites rElations), a machine learning tool to predict the metabolite concentration from the microbiome composition and produce a latent representation of the interaction. This representation is then used to predict the host condition. LOCATE's accuracy in predicting the metabolome is higher than all current predictors. The metabolite concentration prediction accuracy significantly decreases cross datasets, and cross conditions, especially in 16S data. LOCATE's latent representation predicts the host condition better than either the microbiome or the metabolome. This representation is strongly correlated with host demographics. A significant improvement in accuracy (0.793 vs. 0.724 average accuracy) is obtained even with a small number of metabolite samples ([Formula: see text]). CONCLUSION: These results suggest that a latent representation of the microbiome-metabolome interaction leads to a better association with the host condition than any of the two separated or the simple combination of the two. Video Abstract.

摘要

背景:微生物对其人类宿主的影响通常是通过改变代谢物浓度来介导的。因此,已经提出了多种工具来预测微生物分类群频率与代谢物浓度之间的关系。这些工具通常无法捕捉微生物组-代谢物关系对环境的依赖。

结果:我们提出将微生物组-代谢组关系视为复杂相互作用的平衡,并将宿主状况与代谢组对数浓度与微生物组对数频率之间相互作用的潜在表示相关联。我们开发了 LOCATE(微生物组和代谢物关系的潜在变量),这是一种机器学习工具,可从微生物组组成预测代谢物浓度,并产生微生物组和代谢组之间相互作用的潜在表示。然后,该表示用于预测宿主状况。LOCATE 在预测代谢物方面的准确性高于所有当前预测器。代谢物浓度预测精度在跨数据集和跨条件下显著降低,特别是在 16S 数据中。LOCATE 的潜在表示比微生物组或代谢物更好地预测宿主状况。该表示与宿主人口统计学高度相关。即使只有少量代谢物样本([公式:见正文]),也可以获得显著的准确性提高(0.793 与 0.724 的平均准确性)。

结论:这些结果表明,微生物组-代谢组相互作用的潜在表示与宿主状况的关联优于任何两种单独的表示或两者的简单组合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9ef/10858481/4878603409af/40168_2023_1737_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9ef/10858481/680eae8c5a96/40168_2023_1737_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9ef/10858481/3d6c600c8b23/40168_2023_1737_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9ef/10858481/3be42686309b/40168_2023_1737_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9ef/10858481/ae7e2b1697be/40168_2023_1737_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9ef/10858481/0555ee75d966/40168_2023_1737_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9ef/10858481/4878603409af/40168_2023_1737_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9ef/10858481/680eae8c5a96/40168_2023_1737_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9ef/10858481/3d6c600c8b23/40168_2023_1737_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9ef/10858481/3be42686309b/40168_2023_1737_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9ef/10858481/ae7e2b1697be/40168_2023_1737_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9ef/10858481/0555ee75d966/40168_2023_1737_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9ef/10858481/4878603409af/40168_2023_1737_Fig6_HTML.jpg

相似文献

[1]
Gut microbiome-metabolome interactions predict host condition.

Microbiome. 2024-2-10

[2]
A meta-analysis study of the robustness and universality of gut microbiome-metabolome associations.

Microbiome. 2021-10-12

[3]
Improved Metabolite Prediction Using Microbiome Data-Based Elastic Net Models.

Front Cell Infect Microbiol. 2021

[4]
MB-SupCon: Microbiome-based Predictive Models via Supervised Contrastive Learning.

J Mol Biol. 2022-8-15

[5]
AMON: annotation of metabolite origins via networks to integrate microbiome and metabolome data.

BMC Bioinformatics. 2019-11-28

[6]
Blood metabolome predicts gut microbiome α-diversity in humans.

Nat Biotechnol. 2019-9-2

[7]
The gut microbiome-metabolome dataset collection: a curated resource for integrative meta-analysis.

NPJ Biofilms Microbiomes. 2022-10-15

[8]
Metabolome analysis for investigating host-gut microbiota interactions.

J Formos Med Assoc. 2018-9-27

[9]
Systematic Analysis of Impact of Sampling Regions and Storage Methods on Fecal Gut Microbiome and Metabolome Profiles.

mSphere. 2020-1-8

[10]
Effect of host breeds on gut microbiome and serum metabolome in meat rabbits.

BMC Vet Res. 2021-1-7

引用本文的文献

[1]
Deep Learning Transforms Phage-Host Interaction Discovery from Metagenomic Data.

bioRxiv. 2025-6-27

[2]
Lipidomic signatures linked to gut microbiota alterations in children and adolescents with type 2 diabetes mellitus and metabolic syndrome.

Sci Rep. 2025-6-3

[3]
Sex-induced alterations in rumen microbial communities and metabolite profiles: implications for lamb body weight.

BMC Microbiol. 2025-5-27

[4]
Integrated analysis of microbiome and metabolome reveals insights into cervical neoplasia aggravation in a Chinese cohort.

Front Cell Infect Microbiol. 2025-5-8

[5]
Metabolomic analysis reveals key changes in amino acid metabolism in colorectal cancer patients.

Amino Acids. 2025-5-2

[6]
Gut microbiota in colorectal cancer: a review of its influence on tumor immune surveillance and therapeutic response.

Front Oncol. 2025-3-5

[7]
MicrobeRX: a tool for enzymatic-reaction-based metabolite prediction in the gut microbiome.

Microbiome. 2025-3-19

[8]
Microbiota-derived metabolites in inflammatory bowel disease.

Semin Immunopathol. 2025-3-4

[9]
The microbiota: a key regulator of health, productivity, and reproductive success in mammals.

Front Microbiol. 2024-11-5

[10]
The impact of traditional Chinese medicine and dietary compounds on modulating gut microbiota in hepatic fibrosis: A review.

Heliyon. 2024-9-26

本文引用的文献

[1]
Predicting metabolomic profiles from microbial composition through neural ordinary differential equations.

Nat Mach Intell. 2023-3

[2]
An integrated Bayesian framework for multi-omics prediction and classification.

Stat Med. 2024-2-28

[3]
Ordering taxa in image convolution networks improves microbiome-based machine learning accuracy.

Gut Microbes. 2023

[4]
New perspectives into the vaginal microbiome with systems biology.

Trends Microbiol. 2023-4

[5]
The gut microbiome-metabolome dataset collection: a curated resource for integrative meta-analysis.

NPJ Biofilms Microbiomes. 2022-10-15

[6]
Influence of the microbiome, diet and genetics on inter-individual variation in the human plasma metabolome.

Nat Med. 2022-11

[7]
An online atlas of human plasma metabolite signatures of gut microbiome composition.

Nat Commun. 2022-9-23

[8]
Cooperative learning for multiview analysis.

Proc Natl Acad Sci U S A. 2022-9-20

[9]
Gut-brain axis: Focus on gut metabolites short-chain fatty acids.

World J Clin Cases. 2022-2-26

[10]
MIMOSA2: a metabolic network-based tool for inferring mechanism-supported relationships in microbiome-metabolome data.

Bioinformatics. 2022-3-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索