Szwarcman Daniela, Guevara Jorge, Macedo Maysa M G, Zadrozny Bianca, Watson Campbell, Rosa Laura, Oliveira Dario A B
IBM Research, Rio de Janeiro, Brazil.
IBM Research, São Paulo, Brazil.
Sci Rep. 2024 Feb 9;14(1):3396. doi: 10.1038/s41598-024-52773-2.
The stochastic synthesis of extreme, rare climate scenarios is vital for risk and resilience models aware of climate change, directly impacting society in different sectors. However, creating high-quality variations of under-represented samples remains a challenge for several generative models. This paper investigates quantizing reconstruction losses for helping variational autoencoders (VAE) better synthesize extreme weather fields from conventional historical training sets. Building on the classical VAE formulation using reconstruction and latent space regularization losses, we propose various histogram-based penalties to the reconstruction loss that explicitly reinforces the model to synthesize under-represented values better. We evaluate our work using precipitation weather fields, where models usually strive to synthesize well extreme precipitation samples. We demonstrate that bringing histogram awareness to the reconstruction loss improves standard VAE performance substantially, especially for extreme weather events.
对于意识到气候变化的风险和复原力模型而言,极端、罕见气候情景的随机合成至关重要,它会直接影响不同部门的社会。然而,为代表性不足的样本创建高质量变体对几种生成模型来说仍是一项挑战。本文研究量化重建损失,以帮助变分自编码器(VAE)从传统历史训练集中更好地合成极端天气场。基于使用重建和潜在空间正则化损失的经典VAE公式,我们对重建损失提出了各种基于直方图的惩罚,以明确强化模型更好地合成代表性不足的值。我们使用降水天气场评估我们的工作,在降水天气场中模型通常努力很好地合成极端降水样本。我们证明将直方图意识引入重建损失可大幅提高标准VAE的性能,尤其是对于极端天气事件。