Suppr超能文献

镓-68标记的生长抑素受体拮抗剂PET/CT在500余例神经内分泌肿瘤患者中的应用:来自中国一家单中心的经验

Gallium-68 labeled somatostatin receptor antagonist PET/CT in over 500 patients with neuroendocrine neoplasms: experience from a single center in China.

作者信息

Liu Meixi, Cheng Yuejuan, Bai Chunmei, Zhao Hong, Jia Ru, Chen Jingci, Zhu Wenjia, Huo Li

机构信息

Department of Nuclear Medicine, Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.

Department of Oncology, Peking Union Medical College Hospital, Beijing, 100730, China.

出版信息

Eur J Nucl Med Mol Imaging. 2024 Jun;51(7):2002-2011. doi: 10.1007/s00259-024-06639-4. Epub 2024 Feb 10.

Abstract

PURPOSE

Somatostatin receptor antagonists have shown promising performance for imaging neuroendocrine neoplasms. However, there is a lack of studies exploring the diagnostic performance of SSTR antagonists or comparing them with agonists in a large cohort of patients with NENs. This study aimed to retrospectively review all SSTR antagonist PET/CT scans conducted at Peking Union Medical College Hospital since November 2018 in patients with confirmed or suspected NENs.

METHODS

Four types of SSTR antagonists were utilized, including [Ga]Ga-NODAGA-LM3, [Ga]Ga-DOTA-LM3, [Ga]Ga-NODAGA-JR11, and [Ga]Ga-DOTA-JR11. The reference standard was based on a combination of histopathology, clinical evaluation, imaging results, and follow-up. Patient-based sensitivity, specificity, and accuracy were evaluated. The SUV and tumor-to-liver ratio (TLR) of the hottest lesions was recorded and compared between antagonists and [Ga]Ga-DOTATATE.

RESULTS

A total of 622 antagonist scans from 549 patients were included in the analysis. The patient-level sensitivity, specificity, and accuracy of antagonist imaging (all tracers combined) were 91.0% (443/487), 91.9% (57/62), and 91.1% (500/549), respectively. In 181 patients with a comparative [Ga]Ga-DOTATATE PET/CT scan, the patient-level sensitivity, specificity, and accuracy were 87.5% (147/168), 76.9% (10/13), and 86.7% (157/181), respectively. For the hottest lesions, SSTR antagonists all tracers combined demonstrated an overall comparable SUV to [Ga]Ga-DOTATATE (40.1 ± 32.5 vs. 39.4 ± 23.8, p = 0.772). While [Ga]Ga-NODAGA-LM3 showed significantly higher uptake than [Ga]Ga-DOTATATE (57.4 ± 38.5 vs. 40.0 ± 22.8, p<0.001), [Ga]Ga-NODAGA-JR11 (39.7 ± 26.5 vs. 34.3 ± 23.9, p = 0.108) and [Ga]Ga-DOTA-LM3 (38.9 ± 32.1 vs. 37.2 ± 22.1, p = 0.858) showed comparable uptake to [Ga]Ga-DOTATATE, and [Ga]Ga-DOTA-JR11 showed lower uptake (28.9 ± 26.1 vs. 44.0 ± 25.7, p = 0.001). All antagonists exhibited significantly higher TLR than [Ga]Ga-DOTATATE (12.1 ± 10.8 vs. 5.2 ± 4.5, p<0.001).

CONCLUSION

Gallium-68 labeled SSTR antagonists could serve as alternatives to SSTR agonists for imaging of NENs. Among various antagonists, [Ga]Ga-NODAGA-LM3 seems to have the best imaging profile.

摘要

目的

生长抑素受体拮抗剂在神经内分泌肿瘤成像方面已显示出有前景的表现。然而,缺乏在大量神经内分泌肿瘤患者队列中探索生长抑素受体(SSTR)拮抗剂的诊断性能或将其与激动剂进行比较的研究。本研究旨在回顾性分析自2018年11月以来在北京协和医院对确诊或疑似神经内分泌肿瘤患者进行的所有SSTR拮抗剂PET/CT扫描。

方法

使用了四种类型的SSTR拮抗剂,包括[镓]Ga-NODAGA-LM3、[镓]Ga-DOTA-LM3、[镓]Ga-NODAGA-JR11和[镓]Ga-DOTA-JR11。参考标准基于组织病理学、临床评估、影像学结果和随访的综合判断。评估了基于患者的敏感性、特异性和准确性。记录并比较了拮抗剂与[镓]Ga-DOTATATE之间最热点病变的标准化摄取值(SUV)和肿瘤与肝脏比值(TLR)。

结果

分析纳入了来自549例患者的622次拮抗剂扫描。拮抗剂成像(所有示踪剂合并)的患者水平敏感性、特异性和准确性分别为91.0%((443/487))、91.9%((57/62))和91.1%((500/549))。在181例进行了对比性[镓]Ga-DOTATATE PET/CT扫描的患者中,患者水平敏感性、特异性和准确性分别为87.5%((147/168))、76.9%((10/13))和86.7%((157/181))。对于最热点病变,所有SSTR拮抗剂示踪剂合并显示出与[镓]Ga-DOTATATE总体相当的SUV((40.1±32.5) vs. (39.4±23.8),p = 0.772)。虽然[镓]Ga-NODAGA-LM3显示出比[镓]Ga-DOTATATE显著更高的摄取((57.4±38.5) vs. (40.0±22.8),p<0.001),[镓]Ga-NODAGA-JR11((39.7±26.5) vs. (34.3±23.9),p = 0.108)和[镓]Ga-DOTA-LM3((38.9±32.1) vs. (37.2±22.1),p = 0.858)显示出与[镓]Ga-DOTATATE相当的摄取,而[镓]Ga-DOTA-JR11显示出较低的摄取((28.9±26.1) vs. (44.0±25.7),p = 0.001)。所有拮抗剂均显示出比[镓]Ga-DOTATATE显著更高的TLR((12.1±10.8) vs. (5.2±4.5),p<0.001)。

结论

镓-68标记的SSTR拮抗剂可作为SSTR激动剂用于神经内分泌肿瘤成像的替代物。在各种拮抗剂中,[镓]Ga-NODAGA-LM3似乎具有最佳的成像表现。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验