Cho Hyungjoon, Sung Minchul, Choi Jihyun, Lee Hyunsuk, Prabakaran Lakshmishri, Kim Jin Woong
School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
Research and Innovation Center, AMOREPACIFIC, Yongin 17074, Republic of Korea.
ACS Appl Mater Interfaces. 2024 Feb 21;16(7):9255-9263. doi: 10.1021/acsami.3c17200. Epub 2024 Feb 9.
Synthesis of silica aerogel insulators with ultralight weight and strong mechanical properties using a simplified technique remains challenging for functional soft materials. This study introduces a promising method for the fabrication of mechanically reinforced ultralight silica aerogels by employing attractive silica nanolace (ASNLs)-armored Pickering emulsion templates. For this, silica nanolaces (SiNLs) are fabricated by surrounding a cellulose nanofiber with necklace-shaped silica nanospheres. In order to achieve amphiphilicity, which is crucial for the stabilization of oil-in-water Pickering emulsions, hydrophobic alkyl chains and hydrophilic amine groups are grafted onto the surface of SiNLs by silica coupling reactions. Freeze-drying of ASNLs-armored Pickering emulsions has established a new type of aerogel system. The ASNLs-supported mesoporous aerogel shows 3-fold greater compressive strength, 4-fold reduced heat transfer, and a swift heat dissipation profile compared to that of the bare ASNL aerogel. Additionally, the ASNL aerogel achieves an ultralow density of 8 mg cm, attributed to the pore architecture generated from closely jammed emulsion drops. These results show the potential of the ASNL aerogel system, which is ultralight, mechanically stable, and thermally insulating and could be used in building services, energy-saving technologies, and the aerospace industry.
使用简化技术合成具有超轻重量和强机械性能的二氧化硅气凝胶绝缘体对于功能性软材料来说仍然具有挑战性。本研究介绍了一种通过采用具有吸引力的二氧化硅纳米花边(ASNLs)包覆的皮克林乳液模板来制备机械增强超轻二氧化硅气凝胶的有前景的方法。为此,通过用项链状二氧化硅纳米球围绕纤维素纳米纤维来制备二氧化硅纳米花边(SiNLs)。为了实现两亲性,这对于水包油型皮克林乳液的稳定至关重要,通过二氧化硅偶联反应将疏水烷基链和亲水胺基接枝到SiNLs的表面。对ASNLs包覆的皮克林乳液进行冷冻干燥建立了一种新型气凝胶体系。与裸露的ASNL气凝胶相比,ASNLs负载的介孔气凝胶的抗压强度提高了3倍,热传递降低了4倍,并且具有快速的散热特性。此外,ASNL气凝胶实现了8 mg/cm的超低密度,这归因于紧密堆积的乳液滴产生的孔隙结构。这些结果显示了ASNL气凝胶体系的潜力,其超轻、机械稳定且隔热,可用于建筑服务、节能技术和航空航天工业。