Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA.
Natural Resources and the Environment, University of New Hampshire, Durham, New Hampshire, USA.
Glob Chang Biol. 2024 Feb;30(2):e17175. doi: 10.1111/gcb.17175.
The increasing concentration of CO in the atmosphere is perturbing the global carbon (C) cycle, altering stocks of organic C, including soil organic matter (SOM). The effect of this disturbance on soils in arid ecosystems may differ from other ecosystems due to water limitation. In this study, we conducted a density fractionation on soils previously harvested from the Nevada Desert FACE Facility (NDFF) to understand how elevated atmospheric CO (eCO ) affects SOM stability. Soils from beneath the perennial shrub, Larrea tridentata, and from unvegetated interspace were subjected to a sodium polytungstate density fractionation to separate light, particulate organic matter (POM, <1.85 g/cm ) from heavier, mineral associated organic matter (MAOM, >1.85 g/cm ). These fractions were analyzed for organic C, total N, δ C and δ N, to understand the mechanisms behind changes. The heavy fraction was further analyzed by pyrolysis GC/MS to assess changes in organic compound composition. Elevated CO decreased POM-C and MAOM-C in soils beneath L. tridentata while interspace soils exhibited only a small increase in MAOM-N. Analysis of δ C revealed incorporation of new C into both POM and MAOM pools indicating eCO stimulated rapid turnover of both POM and MAOM. The largest losses of POM-C and MAOM-C observed under eCO occurred in soils 20-40 cm in depth, highlighting that belowground C inputs may be a significant driver of SOM decomposition in this ecosystem. Pyrolysis GC/MS analysis revealed a decrease in organic compound diversity in the MAOM fraction of L. tridentata soils, becoming more similar to interspace soils under eCO . These results provide further evidence that MAOM stability may be compromised under disturbance and that SOC stocks in arid ecosystems are vulnerable under continued climate change.
大气中 CO 浓度的增加正在扰乱全球碳(C)循环,改变有机 C 的储量,包括土壤有机物质(SOM)。由于水分限制,这种干扰对干旱生态系统土壤的影响可能与其他生态系统不同。在这项研究中,我们对先前从内华达州荒漠 FACE 设施(NDFF)收获的土壤进行了密度分级,以了解大气中 CO 升高(eCO)如何影响 SOM 的稳定性。从多年生灌木 Larrea tridentata 下和无植被的间隔层采集的土壤进行了聚钨酸钠密度分级,以将轻的、颗粒有机物质(POM,<1.85 g/cm)与较重的矿物结合有机物质(MAOM,>1.85 g/cm)分开。对这些部分进行了有机 C、总 N、δ C 和 δ N 的分析,以了解变化背后的机制。重部分进一步通过热解 GC/MS 进行分析,以评估有机化合物组成的变化。升高的 CO 减少了 L. tridentata 下土壤中的 POM-C 和 MAOM-C,而间隔层土壤中的 MAOM-N 仅略有增加。δ C 的分析表明,新 C 被纳入 POM 和 MAOM 库中,表明 eCO 刺激了 POM 和 MAOM 的快速周转。在 eCO 下观察到的 POM-C 和 MAOM-C 的最大损失发生在 20-40 cm 深的土壤中,这表明地下 C 输入可能是该生态系统中 SOM 分解的重要驱动因素。热解 GC/MS 分析表明,在 L. tridentata 土壤的 MAOM 部分中,有机化合物多样性减少,在 eCO 下变得与间隔层土壤更相似。这些结果进一步表明,MAOM 的稳定性可能受到干扰的影响,并且在持续的气候变化下,干旱生态系统中的 SOC 储量很容易受到影响。