Suppr超能文献

Attenphos:基于注意力机制的通用磷酸化位点预测模型。

Attenphos: General Phosphorylation Site Prediction Model Based on Attention Mechanism.

机构信息

Qingdao Institute of Software, College of Computer Science and Technology, China University of Petroleum, Qingdao 266555, China.

出版信息

Int J Mol Sci. 2024 Jan 26;25(3):1526. doi: 10.3390/ijms25031526.

Abstract

Phosphorylation site prediction has important application value in the field of bioinformatics. It can act as an important reference and help with protein function research, protein structure research, and drug discovery. So, it is of great significance to propose scientific and effective calculation methods to accurately predict phosphorylation sites. In this study, we propose a new method, Attenphos, based on the self-attention mechanism for predicting general phosphorylation sites in proteins. The method not only captures the long-range dependence information of proteins but also better represents the correlation between amino acids through feature vector encoding transformation. Attenphos takes advantage of the one-dimensional convolutional layer to reduce the number of model parameters, improve model efficiency and prediction accuracy, and enhance model generalization. Comparisons between our method and existing state-of-the-art prediction tools were made using balanced datasets from human proteins and unbalanced datasets from mouse proteins. We performed prediction comparisons using independent test sets. The results showed that Attenphos demonstrated the best overall performance in the prediction of Serine (S), Threonine (T), and Tyrosine (Y) sites on both balanced and unbalanced datasets. Compared to current state-of-the-art methods, Attenphos has significantly higher prediction accuracy. This proves the potential of Attenphos in accelerating the identification and functional analysis of protein phosphorylation sites and provides new tools and ideas for biological research and drug discovery.

摘要

磷酸化位点预测在生物信息学领域具有重要的应用价值。它可以作为重要的参考依据,帮助进行蛋白质功能研究、蛋白质结构研究和药物发现。因此,提出科学有效的计算方法来准确预测磷酸化位点具有重要意义。在本研究中,我们提出了一种新的方法 Attenphos,基于自注意力机制,用于预测蛋白质中的一般磷酸化位点。该方法不仅可以捕捉蛋白质的长程依赖信息,还可以通过特征向量编码转换更好地表示氨基酸之间的相关性。Attenphos 利用一维卷积层减少模型参数数量,提高模型效率和预测精度,并增强模型泛化能力。我们使用来自人类蛋白质的平衡数据集和来自小鼠蛋白质的不平衡数据集与现有最先进的预测工具进行了方法比较,并使用独立测试集进行了预测比较。结果表明,Attenphos 在平衡和不平衡数据集上对丝氨酸(S)、苏氨酸(T)和酪氨酸(Y)位点的预测均表现出最佳的整体性能。与当前最先进的方法相比,Attenphos 的预测准确性显著提高。这证明了 Attenphos 在加速蛋白质磷酸化位点的识别和功能分析方面的潜力,并为生物研究和药物发现提供了新的工具和思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1b7b/10855885/26c43db6a479/ijms-25-01526-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验