Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK.
Oxford Eye Hospital, Oxford OX3 9DU, UK.
Int J Mol Sci. 2024 Jan 30;25(3):1697. doi: 10.3390/ijms25031697.
Age-related macular degeneration (AMD) is the leading cause of irreversible vision loss among the elderly in the developed world. Whilst AMD is a multifactorial disease, the involvement of the complement system in its pathology is well documented, with single-nucleotide polymorphisms (SNPs) in different complement genes representing an increased risk factor. With several complement inhibitors explored in clinical trials showing limited success, patients with AMD are still without a reliable treatment option. This indicates that there is still a gap of knowledge in the functional implications and manipulation of the complement system in AMD, hindering the progress towards translational treatments. Since the discovery of the CRISPR/Cas system and its development into a powerful genome engineering tool, the field of molecular biology has been revolutionised. Genetic variants in the complement system have long been associated with an increased risk of AMD, and a variety of haplotypes have been identified to be predisposing/protective, with variation in complement genes believed to be the trigger for dysregulation of the cascade leading to inflammation. AMD-haplotypes (SNPs) alter specific aspects of the activation and regulation of the complement cascade, providing valuable insights into the pathogenic mechanisms of AMD with important diagnostic and therapeutic implications. The effect of targeting these AMD-related SNPs on the regulation of the complement cascade has been poorly explored, and the CRISPR/Cas system provides an ideal tool with which to explore this avenue. Current research concentrates on the association events of specific AMD-related SNPs in complement genes without looking into the effect of targeting these SNPs and therefore influencing the complement system in AMD pathogenesis. This review will explore the current understanding of manipulating the complement system in AMD pathogenesis utilising the genomic manipulation powers of the CRISPR/Cas systems. A number of AMD-related SNPs in different complement factor genes will be explored, with a particular emphasis on factor H (C), factor B (C), and complement C3 ().
年龄相关性黄斑变性(AMD)是发达国家老年人中导致不可逆视力丧失的主要原因。虽然 AMD 是一种多因素疾病,但补体系统在其发病机制中的参与已得到充分证实,不同补体基因中的单核苷酸多态性(SNP)代表了一个增加的风险因素。虽然几种补体抑制剂在临床试验中得到了探索,但效果有限,AMD 患者仍然没有可靠的治疗选择。这表明,在 AMD 中补体系统的功能意义和操作方面仍存在知识差距,阻碍了向转化治疗的进展。自从发现 CRISPR/Cas 系统并将其发展成为一种强大的基因组工程工具以来,分子生物学领域发生了革命性的变化。补体系统中的遗传变异长期以来一直与 AMD 的风险增加相关,已经确定了多种单倍型具有易感性/保护性,补体基因的变异被认为是导致级联失调导致炎症的触发因素。AMD 单倍型(SNP)改变补体级联激活和调节的特定方面,为 AMD 的发病机制提供了有价值的见解,并具有重要的诊断和治疗意义。针对这些 AMD 相关 SNP 对补体级联调节的影响的研究还很少,而 CRISPR/Cas 系统提供了一个理想的工具来探索这一途径。目前的研究集中在补体基因中特定 AMD 相关 SNP 的关联事件上,而没有研究针对这些 SNP 并因此影响 AMD 发病机制中的补体系统的效果。本综述将探讨利用 CRISPR/Cas 系统的基因组操作能力在 AMD 发病机制中操纵补体系统的当前理解。将探讨不同补体因子基因中的多种 AMD 相关 SNP,特别强调因子 H(C)、因子 B(C)和补体 C3()。
Eur J Hum Genet. 2009-3-4
Invest Ophthalmol Vis Sci. 2013-1-7
Dis Model Mech. 2023-2-1
J Control Release. 2022-2
Precis Clin Med. 2021-7-10
Cell Mol Life Sci. 2021-5
Prog Retin Eye Res. 2021-9
J Neuroinflammation. 2020-11-25
Comput Struct Biotechnol J. 2020-9-8