Suppr超能文献

基于特征扰动的一致性正则化方法增强遥感图像的半监督语义分割

Enhancing Semi-Supervised Semantic Segmentation of Remote Sensing Images via Feature Perturbation-Based Consistency Regularization Methods.

作者信息

Xin Yi, Fan Zide, Qi Xiyu, Geng Ying, Li Xinming

机构信息

Key Laboratory of Target Cognition and Application Technology, The Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China.

The Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China.

出版信息

Sensors (Basel). 2024 Jan 23;24(3):730. doi: 10.3390/s24030730.

Abstract

In the field of remote sensing technology, the semantic segmentation of remote sensing images carries substantial importance. The creation of high-quality models for this task calls for an extensive collection of image data. However, the manual annotation of these images can be both time-consuming and labor-intensive. This has catalyzed the advent of semi-supervised semantic segmentation methodologies. Yet, the complexities inherent within the foreground categories of these remote sensing images present challenges in preserving prediction consistency. Moreover, remote sensing images possess more complex features, and different categories are confused within the feature space, making optimization based on the feature space challenging. To enhance model consistency and to optimize feature-based class categorization, this paper introduces a novel semi-supervised semantic segmentation framework based on Mean Teacher (MT). Unlike the conventional Mean Teacher that only introduces perturbations at the image level, we incorporate perturbations at the feature level. Simultaneously, to maintain consistency after feature perturbation, we employ contrastive learning for feature-level learning. In response to the complex feature space of remote sensing images, we utilize entropy threshold to assist contrastive learning, selecting feature key-values more precisely, thereby enhancing the accuracy of segmentation. Extensive experimental results on the ISPRS Potsdam dataset and the challenging iSAID dataset substantiate the superior performance of our proposed methodology.

摘要

在遥感技术领域,遥感图像的语义分割具有重要意义。为完成此任务创建高质量模型需要大量收集图像数据。然而,对这些图像进行人工标注既耗时又费力。这催生了半监督语义分割方法的出现。然而,这些遥感图像前景类别的内在复杂性给保持预测一致性带来了挑战。此外,遥感图像具有更复杂的特征,不同类别在特征空间中相互混淆,使得基于特征空间的优化具有挑战性。为了提高模型一致性并优化基于特征的类别分类,本文引入了一种基于均值教师(MT)的新型半监督语义分割框架。与仅在图像级别引入扰动的传统均值教师不同,我们在特征级别引入扰动。同时,为了在特征扰动后保持一致性,我们采用对比学习进行特征级学习。针对遥感图像复杂的特征空间,我们利用熵阈值辅助对比学习,更精确地选择特征键值,从而提高分割精度。在ISPRS波茨坦数据集和具有挑战性的iSAID数据集上的大量实验结果证实了我们提出的方法具有卓越性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b45c/10857282/8c804cf87e23/sensors-24-00730-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验