Suppr超能文献

基于三重不确定性引导的均值教师模型与对比学习的半监督医学图像分割。

Semi-supervised medical image segmentation via a tripled-uncertainty guided mean teacher model with contrastive learning.

机构信息

School of Computer Science, Sichuan University, Chengdu, China.

Department of Risk Controlling Research, JD.COM, China.

出版信息

Med Image Anal. 2022 Jul;79:102447. doi: 10.1016/j.media.2022.102447. Epub 2022 Apr 8.

Abstract

Due to the difficulty in accessing a large amount of labeled data, semi-supervised learning is becoming an attractive solution in medical image segmentation. To make use of unlabeled data, current popular semi-supervised methods (e.g., temporal ensembling, mean teacher) mainly impose data-level and model-level consistency on unlabeled data. In this paper, we argue that in addition to these strategies, we could further utilize auxiliary tasks and consider task-level consistency to better excavate effective representations from unlabeled data for segmentation. Specifically, we introduce two auxiliary tasks, i.e., a foreground and background reconstruction task for capturing semantic information and a signed distance field (SDF) prediction task for imposing shape constraint, and explore the mutual promotion effect between the two auxiliary and the segmentation tasks based on mean teacher architecture. Moreover, to handle the potential bias of the teacher model caused by annotation scarcity, we develop a tripled-uncertainty guided framework to encourage the three tasks in the student model to learn more reliable knowledge from the teacher. When calculating uncertainty, we propose an uncertainty weighted integration (UWI) strategy for yielding the segmentation predictions of the teacher. In addition, following the advance of unsupervised learning in leveraging the unlabeled data, we also incorporate a contrastive learning based constraint to help the encoders extract more distinct representations to promote the medical image segmentation performance. Extensive experiments on the public 2017 ACDC dataset and the PROMISE12 dataset have demonstrated the effectiveness of our method.

摘要

由于难以获取大量标记数据,半监督学习在医学图像分割中成为一种有吸引力的解决方案。为了利用未标记数据,当前流行的半监督方法(例如,时间集成、均值教师)主要对未标记数据施加数据级和模型级一致性。在本文中,我们认为除了这些策略之外,我们还可以进一步利用辅助任务,并考虑任务级一致性,以便从未标记数据中更好地挖掘有效的表示来进行分割。具体来说,我们引入了两个辅助任务,即用于捕获语义信息的前景和背景重建任务,以及用于施加形状约束的Signed Distance Field (SDF) 预测任务,并基于均值教师架构探索这两个辅助任务和分割任务之间的相互促进作用。此外,为了处理由于注释不足导致的教师模型的潜在偏差,我们开发了一个三重不确定性引导框架,以鼓励学生模型中的三个任务从教师那里学习更可靠的知识。在计算不确定性时,我们提出了一种不确定性加权集成 (UWI) 策略,以产生教师的分割预测。此外,继无监督学习在利用未标记数据方面的进展之后,我们还结合了基于对比学习的约束,以帮助编码器提取更具区别性的表示,从而提高医学图像分割性能。在公共的 2017 ACDC 数据集和 PROMISE12 数据集上进行的广泛实验表明了我们方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验