Suppr超能文献

基于有效特征提取和分类方法的动态日本手语识别投手姿势估计

Dynamic Japanese Sign Language Recognition Throw Hand Pose Estimation Using Effective Feature Extraction and Classification Approach.

机构信息

School of Computer Science and Engineering, The University of Aizu, Aizuwakamatsu 965-8580, Japan.

出版信息

Sensors (Basel). 2024 Jan 26;24(3):826. doi: 10.3390/s24030826.

Abstract

Japanese Sign Language (JSL) is vital for communication in Japan's deaf and hard-of-hearing community. But probably because of the large number of patterns, 46 types, there is a mixture of static and dynamic, and the dynamic ones have been excluded in most studies. Few researchers have been working to develop a dynamic JSL alphabet, and their performance accuracy is unsatisfactory. We proposed a dynamic JSL recognition system using effective feature extraction and feature selection approaches to overcome the challenges. In the procedure, we follow the hand pose estimation, effective feature extraction, and machine learning techniques. We collected a video dataset capturing JSL gestures through standard RGB cameras and employed MediaPipe for hand pose estimation. Four types of features were proposed. The significance of these features is that the same feature generation method can be used regardless of the number of frames or whether the features are dynamic or static. We employed a Random forest (RF) based feature selection approach to select the potential feature. Finally, we fed the reduced features into the kernels-based Support Vector Machine (SVM) algorithm classification. Evaluations conducted on our proprietary newly created dynamic Japanese sign language alphabet dataset and LSA64 dynamic dataset yielded recognition accuracies of 97.20% and 98.40%, respectively. This innovative approach not only addresses the complexities of JSL but also holds the potential to bridge communication gaps, offering effective communication for the deaf and hard-of-hearing, and has broader implications for sign language recognition systems globally.

摘要

日本手语(JSL)对于日本聋人和重听人群的交流至关重要。但可能由于其模式数量众多,共有 46 种,既有静态的也有动态的,而且大多数研究都排除了动态的,因此很少有研究人员致力于开发动态的 JSL 字母表,他们的性能准确性也不尽如人意。我们提出了一种使用有效特征提取和特征选择方法的动态 JSL 识别系统,以克服这些挑战。在这个过程中,我们遵循手姿估计、有效特征提取和机器学习技术。我们通过标准 RGB 相机收集了一个捕捉 JSL 手势的视频数据集,并使用 MediaPipe 进行手姿估计。我们提出了四种类型的特征。这些特征的重要意义在于,无论帧数多少,或者特征是静态的还是动态的,都可以使用相同的特征生成方法。我们采用基于随机森林(RF)的特征选择方法来选择潜在的特征。最后,我们将降维后的特征输入基于核的支持向量机(SVM)算法进行分类。在我们自主创建的新动态日本手语字母数据集和 LSA64 动态数据集上进行的评估分别产生了 97.20%和 98.40%的识别准确率。这种创新方法不仅解决了 JSL 的复杂性问题,还有助于弥合沟通障碍,为聋人和重听人提供有效的沟通方式,并且对全球的手语识别系统具有更广泛的意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4866/10857289/8ec9ed1eec3c/sensors-24-00826-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验