Suppr超能文献

使用插入注意力机制的物理驱动单像素成像的光学加密

Optical Encryption Using Attention-Inserted Physics-Driven Single-Pixel Imaging.

作者信息

Yu Wen-Kai, Wang Shuo-Fei, Shang Ke-Qian

机构信息

Center for Quantum Technology Research, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement of Ministry of Education, School of Physics, Beijing Institute of Technology, Beijing 100081, China.

出版信息

Sensors (Basel). 2024 Feb 4;24(3):1012. doi: 10.3390/s24031012.

Abstract

Optical encryption based on single-pixel imaging (SPI) has made great advances with the introduction of deep learning. However, the use of deep neural networks usually requires a long training time, and the networks need to be retrained once the target scene changes. With this in mind, we propose an SPI encryption scheme based on an attention-inserted physics-driven neural network. Here, an attention module is used to encrypt the single-pixel measurement value sequences of two images, together with a sequence of cryptographic keys, into a one-dimensional ciphertext signal to complete image encryption. Then, the encrypted signal is fed into a physics-driven neural network for high-fidelity decoding (i.e., decryption). This scheme eliminates the need for pre-training the network and gives more freedom to spatial modulation. Both simulation and experimental results have demonstrated the feasibility and eavesdropping resistance of this scheme. Thus, it will lead SPI-based optical encryption closer to intelligent deep encryption.

摘要

随着深度学习的引入,基于单像素成像(SPI)的光学加密取得了巨大进展。然而,深度神经网络的使用通常需要较长的训练时间,并且一旦目标场景发生变化,网络就需要重新训练。考虑到这一点,我们提出了一种基于注意力插入物理驱动神经网络的SPI加密方案。在这里,一个注意力模块用于将两幅图像的单像素测量值序列与一系列加密密钥一起加密成一维密文信号,以完成图像加密。然后,将加密后的信号输入到物理驱动神经网络中进行高保真解码(即解密)。该方案无需对网络进行预训练,并为空间调制提供了更大的自由度。仿真和实验结果都证明了该方案的可行性和抗窃听性。因此,它将使基于SPI的光学加密更接近智能深度加密。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97cc/10857763/3959aec4ed3d/sensors-24-01012-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验