智能pH传感:一种采用多功能电荷俘获闪存离子敏感场效应晶体管技术的自灵敏度可编程平台。
Smart pH Sensing: A Self-Sensitivity Programmable Platform with Multi-Functional Charge-Trap-Flash ISFET Technology.
作者信息
Kim Yeong-Ung, Cho Won-Ju
机构信息
Department of Electronic Materials Engineering, Kwangwoon University, Gwangun-ro 20, Nowon-gu, Seoul 01897, Republic of Korea.
出版信息
Sensors (Basel). 2024 Feb 4;24(3):1017. doi: 10.3390/s24031017.
This study presents a novel pH sensor platform utilizing charge-trap-flash-type metal oxide semiconductor field-effect transistors (CTF-type MOSFETs) for enhanced sensitivity and self-amplification. Traditional ion-sensitive field-effect transistors (ISFETs) face challenges in commercialization due to low sensitivity at room temperature, known as the Nernst limit. To overcome this limitation, we explore resistive coupling effects and CTF-type MOSFETs, allowing for flexible adjustment of the amplification ratio. The platform adopts a unique approach, employing CTF-type MOSFETs as both transducers and resistors, ensuring efficient sensitivity control. An extended-gate (EG) structure is implemented to enhance cost-effectiveness and increase the overall lifespan of the sensor platform by preventing direct contact between analytes and the transducer. The proposed pH sensor platform demonstrates effective sensitivity control at various amplification ratios. Stability and reliability are validated by investigating non-ideal effects, including hysteresis and drift. The CTF-type MOSFETs' electrical characteristics, energy band diagrams, and programmable resistance modulation are thoroughly characterized. The results showcase remarkable stability, even under prolonged and repetitive operations, indicating the platform's potential for accurate pH detection in diverse environments. This study contributes a robust and stable alternative for detecting micro-potential analytes, with promising applications in health management and point-of-care settings.
本研究提出了一种新型pH传感器平台,该平台利用电荷俘获闪存型金属氧化物半导体场效应晶体管(CTF型MOSFET)来提高灵敏度和实现自放大。传统的离子敏感场效应晶体管(ISFET)由于在室温下灵敏度较低(即能斯特极限)而面临商业化挑战。为了克服这一限制,我们探索了电阻耦合效应和CTF型MOSFET,从而能够灵活调整放大率。该平台采用了一种独特的方法,将CTF型MOSFET既用作传感器又用作电阻器,以确保有效的灵敏度控制。通过采用扩展栅(EG)结构来提高成本效益,并通过防止分析物与传感器直接接触来延长传感器平台的整体使用寿命。所提出的pH传感器平台在各种放大率下都展示了有效的灵敏度控制。通过研究包括滞后和漂移在内的非理想效应,验证了稳定性和可靠性。对CTF型MOSFET的电学特性、能带图和可编程电阻调制进行了全面表征。结果表明,即使在长时间重复操作下,该平台也具有显著的稳定性,这表明该平台在不同环境中进行精确pH检测具有潜力。本研究为检测微电势分析物提供了一种强大而稳定的替代方案,在健康管理和即时护理环境中具有广阔的应用前景。
相似文献
J Nanosci Nanotechnol. 2019-3-1
Sci Rep. 2017-2-2
引用本文的文献
本文引用的文献
ACS Appl Mater Interfaces. 2021-3-10
ACS Appl Mater Interfaces. 2017-6-22
Anal Chem. 2012-1-17
Nano Lett. 2010-6-9
Annu Rev Biomed Eng. 2008