Suppr超能文献

利用人工智能实现非侵入式自主反射失调检测,提升脊髓损伤护理水平。

Advancing spinal cord injury care through non-invasive autonomic dysreflexia detection with AI.

机构信息

Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA.

Krannert Cardiovascular Research Center, Division of Cardiovascular Medicine, IU School of Medicine, Indianapolis, USA.

出版信息

Sci Rep. 2024 Feb 10;14(1):3439. doi: 10.1038/s41598-024-53718-5.

Abstract

This paper presents an AI-powered solution for detecting and monitoring Autonomic Dysreflexia (AD) in individuals with spinal cord injuries. Current AD detection methods are limited, lacking non-invasive monitoring systems. We propose a model that combines skin nerve activity (SKNA) signals with a deep neural network (DNN) architecture to overcome this limitation. The DNN is trained on a meticulously curated dataset obtained through controlled colorectal distension, inducing AD events in rats with spinal cord surgery above the T6 level. The proposed system achieves an impressive average classification accuracy of 93.9% ± 2.5%, ensuring accurate AD identification with high precision (95.2% ± 2.1%). It demonstrates a balanced performance with an average F1 score of 94.4% ± 1.8%, indicating a harmonious balance between precision and recall. Additionally, the system exhibits a low average false-negative rate of 4.8% ± 1.6%, minimizing the misclassification of non-AD cases. The robustness and generalizability of the system are validated on unseen data, maintaining high accuracy, F1 score, and a low false-negative rate. This AI-powered solution represents a significant advancement in non-invasive, real-time AD monitoring, with the potential to improve patient outcomes and enhance AD management in individuals with spinal cord injuries. This research contributes a promising solution to the critical healthcare challenge of AD detection and monitoring.

摘要

本文提出了一种基于人工智能的解决方案,用于检测和监测脊髓损伤患者的自主神经反射异常(AD)。目前的 AD 检测方法存在局限性,缺乏非侵入性监测系统。我们提出了一种模型,该模型将皮肤神经活动(SKNA)信号与深度神经网络(DNN)架构相结合,以克服这一限制。DNN 是在经过精心策划的数据集上进行训练的,该数据集是通过对 T6 以上脊髓手术的大鼠进行控制性结肠扩张获得的,以诱导 AD 事件。所提出的系统实现了令人印象深刻的平均分类准确率 93.9%±2.5%,确保了高精度(95.2%±2.1%)的 AD 准确识别。它具有平均 F1 分数为 94.4%±1.8%的平衡性能,表明精度和召回率之间达到了和谐的平衡。此外,该系统的平均假阴性率为 4.8%±1.6%,可最大限度地减少非 AD 病例的错误分类。该系统在未见数据上的稳健性和通用性得到了验证,保持了高准确率、F1 分数和低假阴性率。这种基于人工智能的解决方案代表了非侵入性、实时 AD 监测的重大进展,有望改善脊髓损伤患者的预后并加强 AD 管理。这项研究为 AD 检测和监测这一关键的医疗保健挑战提供了一个有前途的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2088/10858945/88436866ef74/41598_2024_53718_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验