Suppr超能文献

用于解释水的外差手性选择性和频产生光谱的理论基础。

Theoretical basis for interpreting heterodyne chirality-selective sum frequency generation spectra of water.

作者信息

Konstantinovsky Daniel, Santiago Ty, Tremblay Matthew, Simpson Garth J, Hammes-Schiffer Sharon, Yan Elsa C Y

机构信息

Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA.

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA.

出版信息

J Chem Phys. 2024 Feb 7;160(5). doi: 10.1063/5.0181718.

Abstract

Chirality-selective vibrational sum frequency generation (chiral SFG) spectroscopy has emerged as a powerful technique for the study of biomolecular hydration water due to its sensitivity to the induced chirality of the first hydration shell. Thus far, water O-H vibrational bands in phase-resolved heterodyne chiral SFG spectra have been fit using one Lorentzian function per vibrational band, and the resulting fit has been used to infer the underlying frequency distribution. Here, we show that this approach may not correctly reveal the structure and dynamics of hydration water. Our analysis illustrates that the chiral SFG responses of symmetric and asymmetric O-H stretch modes of water have opposite phase and equal magnitude and are separated in energy by intramolecular vibrational coupling and a heterogeneous environment. The sum of the symmetric and asymmetric responses implies that an O-H stretch in a heterodyne chiral SFG spectrum should appear as two peaks with opposite phase and equal amplitude. Using pairs of Lorentzian functions to fit water O-H stretch vibrational bands, we improve spectral fitting of previously acquired experimental spectra of model β-sheet proteins and reduce the number of free parameters. The fitting allows us to estimate the vibrational frequency distribution and thus reveals the molecular interactions of water in hydration shells of biomolecules directly from chiral SFG spectra.

摘要

手性选择性振动和频产生(手性SFG)光谱法已成为研究生物分子水化水的一种强大技术,因为它对第一水化层的诱导手性敏感。到目前为止,相分辨外差手性SFG光谱中的水O-H振动带一直是每个振动带用一个洛伦兹函数进行拟合,并且所得拟合结果已被用于推断潜在的频率分布。在此,我们表明这种方法可能无法正确揭示水化水的结构和动力学。我们的分析表明,水的对称和不对称O-H伸缩模式的手性SFG响应具有相反的相位和相等的幅度,并且通过分子内振动耦合和异质环境在能量上分开。对称和不对称响应的总和意味着外差手性SFG光谱中的O-H伸缩应表现为两个具有相反相位和相等幅度的峰。使用一对洛伦兹函数拟合水O-H伸缩振动带,我们改进了先前获得的模型β-折叠蛋白实验光谱的光谱拟合,并减少了自由参数的数量。该拟合使我们能够估计振动频率分布,从而直接从手性SFG光谱揭示生物分子水化层中水的分子相互作用。

相似文献

2
Detecting Interplay of Chirality, Water, and Interfaces for Elucidating Biological Functions.
Acc Chem Res. 2023 Jun 20;56(12):1494-1504. doi: 10.1021/acs.accounts.3c00088. Epub 2023 May 10.
4
Chirality Discriminated by Heterodyne-Detected Vibrational Sum Frequency Generation.
J Phys Chem Lett. 2014 Aug 21;5(16):2874-8. doi: 10.1021/jz501158r. Epub 2014 Aug 8.
5
Simulation of the Chiral Sum Frequency Generation Response of Supramolecular Structures Requires Vibrational Couplings.
J Phys Chem B. 2021 Nov 4;125(43):12072-12081. doi: 10.1021/acs.jpcb.1c06360. Epub 2021 Oct 26.
6
Chiral vibrational structures of proteins at interfaces probed by sum frequency generation spectroscopy.
Int J Mol Sci. 2011;12(12):9404-25. doi: 10.3390/ijms12129404. Epub 2011 Dec 16.
7
Chiral Water Superstructures around Antiparallel β-Sheets Observed by Chiral Vibrational Sum Frequency Generation Spectroscopy.
J Phys Chem Lett. 2019 Jun 20;10(12):3395-3401. doi: 10.1021/acs.jpclett.9b00878. Epub 2019 Jun 7.
8
Mirror-image antiparallel β-sheets organize water molecules into superstructures of opposite chirality.
Proc Natl Acad Sci U S A. 2020 Dec 29;117(52):32902-32909. doi: 10.1073/pnas.2015567117. Epub 2020 Dec 14.
9
Chirality discrimination at the carvone air/liquid interfaces detected by heterodyne-detected sum frequency generation.
Heliyon. 2019 Dec 17;5(12):e03061. doi: 10.1016/j.heliyon.2019.e03061. eCollection 2019 Dec.
10
Detecting the First Hydration Shell Structure around Biomolecules at Interfaces.
ACS Cent Sci. 2022 Oct 26;8(10):1404-1414. doi: 10.1021/acscentsci.2c00702. Epub 2022 Sep 6.

引用本文的文献

1
Drug binding disrupts chiral water structures in the DNA first hydration shell.
Chem Sci. 2025 Mar 13;16(16):6853-6861. doi: 10.1039/d4sc08372e. eCollection 2025 Apr 16.

本文引用的文献

1
Characterizing Interfaces by Voronoi Tessellation.
J Phys Chem Lett. 2023 Jun 15;14(23):5260-5266. doi: 10.1021/acs.jpclett.3c01159. Epub 2023 Jun 2.
2
Detecting Interplay of Chirality, Water, and Interfaces for Elucidating Biological Functions.
Acc Chem Res. 2023 Jun 20;56(12):1494-1504. doi: 10.1021/acs.accounts.3c00088. Epub 2023 May 10.
4
Detecting the First Hydration Shell Structure around Biomolecules at Interfaces.
ACS Cent Sci. 2022 Oct 26;8(10):1404-1414. doi: 10.1021/acscentsci.2c00702. Epub 2022 Sep 6.
5
Simulation of the Chiral Sum Frequency Generation Response of Supramolecular Structures Requires Vibrational Couplings.
J Phys Chem B. 2021 Nov 4;125(43):12072-12081. doi: 10.1021/acs.jpcb.1c06360. Epub 2021 Oct 26.
6
Mirror-image antiparallel β-sheets organize water molecules into superstructures of opposite chirality.
Proc Natl Acad Sci U S A. 2020 Dec 29;117(52):32902-32909. doi: 10.1073/pnas.2015567117. Epub 2020 Dec 14.
7
Chiral Water Superstructures around Antiparallel β-Sheets Observed by Chiral Vibrational Sum Frequency Generation Spectroscopy.
J Phys Chem Lett. 2019 Jun 20;10(12):3395-3401. doi: 10.1021/acs.jpclett.9b00878. Epub 2019 Jun 7.
8
DNA's Chiral Spine of Hydration.
ACS Cent Sci. 2017 Jul 26;3(7):708-714. doi: 10.1021/acscentsci.7b00100. Epub 2017 May 24.
10
Quantitative sum-frequency generation vibrational spectroscopy of molecular surfaces and interfaces: lineshape, polarization, and orientation.
Annu Rev Phys Chem. 2015 Apr;66:189-216. doi: 10.1146/annurev-physchem-040214-121322. Epub 2014 Dec 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验