Zhang Lingyu, Song Huajie, Yang Yanqiang, Zhou Zhongjun, Zhang Jilong, Qu Zexing
Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China.
Institute of Applied Physics and Computational Mathematics, Beijing 100094, China.
J Chem Phys. 2024 Feb 14;160(6). doi: 10.1063/5.0184468.
The microscopic mechanism of the energy transfer in cyclotrimethylene trinitramine (RDX) is of particular importance for the study of the energy release process in high-energy materials. In this work, an effective vibrational Hamiltonian based on normal modes (NMs) has been introduced to study the energy transfer process of RDX. The results suggest that the energy redistribution in RDX can be characterized as an ultrafast process with a time scale of 25 fs, during which the energy can be rapidly localized to the -NNO2 twisting mode (vNNO2), the N-N stretching mode (vN-N), and the C-H stretching mode (vC-H). Here, the vNNO2 and vN-N modes are directly related to the cleavage and dissociation of the N-N bond in RDX and, therefore, can be referred to as "active modes." More importantly, we found that the energy can be rapidly transferred from the vC-H mode to the vNNO2 mode due to their strong coupling. From this perspective, the vC-H mode can be regarded as an "energy collector" that plays a pivotal role in supplying energy to the "active modes." In addition, the bond order analysis shows that the dissociation of the N-N bonds of RDX follows a combined twisting and stretching path along the N-N bond. This could be an illustration of the further exothermic decomposition triggered by the accumulation of vibrational energy. The present study reveals the microscopic mechanism for the vibrational energy redistribution process of RDX, which is important for further investigation of the energy transfer process in high-energy materials.
环三亚甲基三硝胺(RDX)中能量转移的微观机制对于研究高能材料中的能量释放过程尤为重要。在这项工作中,引入了一种基于简正模式(NMs)的有效振动哈密顿量来研究RDX的能量转移过程。结果表明,RDX中的能量重新分布可被表征为一个时间尺度为25飞秒的超快过程,在此期间,能量可迅速定域到-NNO2扭转模式(vNNO2)、N-N伸缩模式(vN-N)和C-H伸缩模式(vC-H)。这里,vNNO2和vN-N模式与RDX中N-N键的断裂和解离直接相关,因此可被称为“活性模式”。更重要的是,我们发现由于vC-H模式与vNNO2模式之间的强耦合,能量可从vC-H模式迅速转移到vNNO2模式。从这个角度来看,vC-H模式可被视为一个“能量收集器”,在为“活性模式”提供能量方面起着关键作用。此外,键级分析表明,RDX中N-N键的解离沿着N-N键遵循扭转和拉伸相结合的路径。这可能是振动能量积累引发进一步放热分解的一个例证。本研究揭示了RDX振动能量重新分布过程的微观机制,这对于进一步研究高能材料中的能量转移过程具有重要意义。