Departamento de Química Física, Universidad de Murcia, 30100 Murcia, Spain.
J Phys Chem A. 2010 Nov 4;114(43):11450-61. doi: 10.1021/jp106998h.
Nonequilibrium molecular dynamics (MD) simulations and instantaneous normal mode (INMs) analyses are used to study the vibrational relaxation of the C-H stretching modes (ν(s)(CH₃)) of deuterated N-methylacetamide (NMAD) in aqueous (D2O) solution. The INMs are identified unequivocally in terms of the equilibrium normal modes (ENMs), or groups of them, using a restricted version of the recently proposed Min-Cost assignment method. After excitation of the parent ν(s)(CH₃) modes with one vibrational quantum, the vibrational energy is shown to dissipate through both intramolecular vibrational redistribution (IVR) and intermolecular vibrational energy transfer (VET). The decay of the vibrational energy of the ν(s)(CH₃) modes is well fitted to a triple exponential function, with each characterizing a well-defined stage of the entire relaxation process. The first, and major, relaxation stage corresponds to a coherent ultrashort (τ(rel) = 0.07 ps) energy transfer from the parent ν(s)(CH₃) modes to the methyl bending modes δ(CH₃), so that the initially excited state rapidly evolves into a mixed stretch-bend state. In the second stage, characterized by a time of 0.92 ps, the vibrational energy flows through IVR to a number of mid-range-energy vibrations of the solute. In the third stage, the vibrational energy accumulated in the excited modes dissipates into the bath through an indirect VET process mediated by lower-energy modes, on a time scale of 10.6 ps. All the specific relaxation channels participating in the whole relaxation process are properly identified. The results from the simulations are finally compared with the recent experimental measurements of the ν(s)(CH₃) vibrational energy relaxation in NMAD/D₂O(l) reported by Dlott et al. (J. Phys. Chem. A 2009, 113, 75.) using ultrafast infrared-Raman spectroscopy.
使用非平衡分子动力学(MD)模拟和瞬时法向振动态(INMs)分析研究了氘代 N-甲基乙酰胺(NMAD)在水溶液(D2O)中的 C-H 伸缩模式(ν(s)(CH₃))的振动弛豫。根据最近提出的最小成本分配方法的受限版本,通过平衡法向振动态(ENMs)或它们的组,明确地识别出 INMs。在激发母体 ν(s)(CH₃)模式一个振动量子后,振动能量通过分子内振动再分配(IVR)和分子间振动能量转移(VET)耗散。ν(s)(CH₃)模式的振动能量衰减很好地符合三指数函数,每个指数都描述了整个弛豫过程的一个明确阶段。第一个也是主要的弛豫阶段对应于母体 ν(s)(CH₃)模式与甲基弯曲模式 δ(CH₃)之间的相干超短(τ(rel)= 0.07 ps)能量转移,因此初始激发态迅速演变成混合伸缩弯曲态。在第二个阶段,时间为 0.92 ps,振动能量通过 IVR 流到溶质的一些中能振动。在第三个阶段,在 10.6 ps 的时间尺度上,通过低能模式介导的间接 VET 过程,在激发模式中积累的振动能量耗散到浴中。所有参与整个弛豫过程的特定弛豫通道都被正确识别。最后,将模拟结果与 Dlott 等人最近报道的 NMAD/D₂O(l)中 ν(s)(CH₃)振动能量弛豫的超快红外拉曼光谱实验测量结果进行了比较(J. Phys. Chem. A 2009, 113, 75.)。