Suppr超能文献

在原子水平解析多元素半导体纳米晶体:复杂CuZnSnSe(CZTSe)四足体中畴和有序性的完全破译

Resolving Multielement Semiconductor Nanocrystals at the Atomic Level: Complete Deciphering of Domains and Order in Complex CuZnSnSe (CZTSe) Tetrapods.

作者信息

Ren Huan, Sun Yuanwei, Hoffmann Frank, Vandichel Matthias, Adegoke Temilade E, Liu Ning, McCarthy Conor, Gao Peng, Ryan Kevin M

机构信息

Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland.

Material Science and Engineering, National University of Singapore, 117557, Singapore.

出版信息

Nano Lett. 2024 Feb 21;24(7):2125-2130. doi: 10.1021/acs.nanolett.3c02810. Epub 2024 Feb 11.

Abstract

Semiconductor nanocrystals (NCs) with high elemental and structural complexity can be engineered to tailor for electronic, photovoltaic, thermoelectric, and battery applications etc. However, this greater complexity causes ambiguity in the atomic structure understanding. This in turn hinders the mechanistic studies of nucleation and growth, the theoretical calculations of functional properties, and the capability to extend functional design across complementary semiconductor nanocrystals. Herein, we successfully deciphered the atomic arrangements of 4 different nanocrystal domains in CuZnSnSe (CZTSe) nanocrystals using crucial zone axis analysis on multiple crystals in different orientations. The results show that the essence of crystallographic progression from binary to multielemental semiconductors is actually the change of theoretical periodicity. This transition is caused by decreased symmetry in the crystal instead of previously assumed crystal deformation. We further reveal that these highly complex crystalline entities have highly ordered element arrangements as opposed to the previous understanding that their elemental orderings are random.

摘要

具有高元素和结构复杂性的半导体纳米晶体(NCs)可以通过设计来满足电子、光伏、热电和电池等应用的需求。然而,这种更高的复杂性导致了对其原子结构理解的模糊性。这反过来又阻碍了成核和生长的机理研究、功能特性的理论计算,以及跨互补半导体纳米晶体扩展功能设计的能力。在此,我们通过对不同取向的多个晶体进行关键区轴分析,成功地解析了CuZnSnSe(CZTSe)纳米晶体中4个不同纳米晶畴的原子排列。结果表明,从二元到多元素半导体的晶体学进展的本质实际上是理论周期性的变化。这种转变是由晶体对称性降低引起的,而不是先前假设的晶体变形。我们进一步揭示,这些高度复杂的晶体实体具有高度有序的元素排列,这与之前认为它们的元素排列是随机的观点相反。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验