Ngoipala Apinya, Ren Huan, Ryan Kevin M, Vandichel Matthias
Department of Chemical Sciences and Bernal Institute, University of Limerick, Limerick, V94 TP9X, Ireland.
Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117543, Singapore.
Adv Sci (Weinh). 2024 Aug;11(31):e2402154. doi: 10.1002/advs.202402154. Epub 2024 Jun 18.
Semiconductor nanocrystals (NCs) are promising materials for various applications. Two of four recently identified CuZnSnSe (CZTSe) domains demonstrate metallic character, while the other two exhibit semiconductor character. The presence of both metallic and semiconductor domains in one NC can hugely benefit future applications. In contrast to traditional band gap studies in the NC community, this study emphasizes that NC domain interfaces also affect the electronic properties. Specifically, the measured band gap of a tetrapod-shaped CZTSe NC is demonstrated to originate from two specific domains (tetragonal I and monoclinic P1c1 CuZnSnSe). The heterojunction between these two semiconductor domains exhibits a staggered type-II band alignment, facilitating the separation of photogenerated electron-hole pairs. Interestingly, tetrapod NCs have the potential to be efficient absorber materials with higher capacitance in photovoltaic applications due to the presence of both semiconductor/semiconductor interfaces and metal/semiconductor "Schottky"-junctions. For the two photo-absorbing domains, the calculated absorption spectra yield maximum photon-absorption coefficients of about 10 cm in the visible and UV regions and a theoretical solar power conversion efficiency up to 20.8%. These insights into the structure-property relationships in CZTSe NCs will guide the design of more efficient advanced optical CZTSe materials for various applications.
半导体纳米晶体(NCs)是适用于各种应用的有前景的材料。最近确定的CuZnSnSe(CZTSe)的四个区域中有两个表现出金属特性,而另外两个则表现出半导体特性。一个NC中同时存在金属和半导体区域对未来的应用大有裨益。与NC领域传统的带隙研究不同,本研究强调NC区域界面也会影响电子特性。具体而言,已证明四足状CZTSe NC的测量带隙源自两个特定区域(四方I和单斜P1c1 CuZnSnSe)。这两个半导体区域之间的异质结呈现出交错的II型能带排列,有利于光生电子-空穴对的分离。有趣的是,由于存在半导体/半导体界面和金属/半导体“肖特基”结,四足NCs有潜力成为光伏应用中具有更高电容的高效吸收材料。对于两个光吸收区域,计算出的吸收光谱在可见光和紫外区域产生的最大光子吸收系数约为10 cm,理论太阳能功率转换效率高达20.8%。这些对CZTSe NCs结构-性能关系的见解将指导设计用于各种应用的更高效的先进光学CZTSe材料。