Brown Jeremy P, Yland J Jennifer J, Williams Paige L, Huybrechts Krista F, Hernández-Díaz Sonia
Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.
Department of Biostatistics, Harvard T.H Chan School of Public Health, Boston, Massachusetts.
medRxiv. 2024 Jan 24:2024.01.23.24301685. doi: 10.1101/2024.01.23.24301685.
The analysis of perinatal studies is complicated by twins and other multiple births even when they are not the exposure, outcome, or a confounder of interest. Common approaches to handling multiples in studies of infant outcomes include restriction to singletons, counting outcomes at the pregnancy-level (i.e., by counting if at least one twin experienced a binary outcome), or infant-level analysis including all infants and, typically, accounting for clustering of outcomes by using generalised estimating equations or mixed effects models. Several healthcare administration databases only support restriction to singletons or pregnancy-level approaches. For example, in MarketScan insurance claims data, diagnoses in twins are often assigned to a single infant identifier, thereby preventing ascertainment of infant-level outcomes among multiples. Different approaches correspond to different causal questions, produce different estimands, and often rely on different assumptions. We demonstrate the differences that can arise from these different approaches using Monte Carlo simulations, algebraic formulas, and an applied example. Furthermore, we provide guidance on the handling of multiples in perinatal studies when using healthcare administration data.
围产期研究的分析因双胞胎和其他多胞胎情况而变得复杂,即使它们不是暴露因素、结局或感兴趣的混杂因素。在婴儿结局研究中处理多胞胎的常见方法包括仅限于单胎、在妊娠层面计算结局(即通过计算至少有一个双胞胎经历了二元结局),或在婴儿层面进行分析,包括所有婴儿,并且通常通过使用广义估计方程或混合效应模型来考虑结局的聚类情况。一些医疗保健管理数据库仅支持仅限于单胎或妊娠层面的方法。例如,在MarketScan保险理赔数据中,双胞胎的诊断通常被分配到一个单一的婴儿标识符,从而无法确定多胞胎中婴儿层面的结局。不同的方法对应不同的因果问题,产生不同的估计量,并且通常依赖不同的假设。我们使用蒙特卡洛模拟、代数公式和一个应用实例展示了这些不同方法可能产生的差异。此外,我们提供了在使用医疗保健管理数据进行围产期研究时处理多胞胎情况的指导。