Suppr超能文献

镍分散的硫化钯单层作为电力变压器中溶解气体分析的潜在传感材料:第一性原理研究

Ni-Dispersed PdS Monolayer as a Potential Sensing Material for Dissolved Gas Analysis in Electrical Transformers: A First-Principles Study.

作者信息

Yu Jiaying, Zhou Xiu, Cui Hao, Chen Lei, Wei Ying, Tian Tian

机构信息

Electric Power Research Institute, State Grid Ningxia Electric Power Co., Ltd., Ningxia 750001, China.

College of Artificial Intelligence, Southwest University, Chongqing 400715, China.

出版信息

ACS Omega. 2024 Jan 29;9(5):5829-5837. doi: 10.1021/acsomega.3c08953. eCollection 2024 Feb 6.

Abstract

To perform the dissolved gas analysis in transformer oil, in this work, we propose the Ni-dispersed PdS (Ni-PdS) monolayer as a promising sensing material for three typical dissolved gases H, CO, and CH. For the Ni-dispersing process, we find that Ni atoms can be chemically stably adsorbed on the PdS surface with a binding energy of -4.11 eV. For gas adsorption systems, it is found that the Ni-PdS monolayer allows the physisorption of H molecules and the chemisorption of CO and CH molecules. Besides, the analysis of electronic properties of the Ni-PdS/gas system reveals its potential as a resistance-type H or CH sensor with sensing responses of -40.9 and 261.5%, separately, and the WF analysis indicates its low potential as a WF-based gas sensor for the three gases. These findings indicate the Ni-dispersed behavior on the PdS surface and the gas-sensing potential of the Ni-PdS monolayer, which we expect can facilitate more investigations about PdS-based materials for applications in gas adsorptions and sensing in some other fields.

摘要

为了对变压器油进行溶解气体分析,在本工作中,我们提出将镍分散的硫化钯(Ni-PdS)单层作为三种典型溶解气体氢气(H)、一氧化碳(CO)和甲烷(CH)的一种有前途的传感材料。对于镍的分散过程,我们发现镍原子能够以-4.11电子伏特的结合能化学稳定地吸附在硫化钯表面。对于气体吸附系统,发现Ni-PdS单层允许氢气分子的物理吸附以及一氧化碳和甲烷分子的化学吸附。此外,对Ni-PdS/气体系统的电子性质分析表明,它有潜力作为电阻型氢气或甲烷传感器,其传感响应分别为-40.9%和261.5%,而功函数分析表明它作为基于功函数的这三种气体传感器的潜力较低。这些发现表明了镍在硫化钯表面的分散行为以及Ni-PdS单层的气敏潜力,我们期望这能够促进对基于硫化钯的材料在其他一些领域的气体吸附和传感应用方面开展更多研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4013/10851375/91db8c8eb65d/ao3c08953_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验