Fliszkiewicz Bartłomiej, Sajdak Marcin
Faculty of New Technologies and Chemistry, Military University of Technology, Warsaw 00-908, Poland.
Faculty of Energy and Environmental Engineering Silesian University of Technology, Gliwice 44-100, Poland.
ACS Omega. 2024 Jan 26;9(5):5966-5971. doi: 10.1021/acsomega.3c09744. eCollection 2024 Feb 6.
In the following research, a new modification of traditional atom pairs is studied. The atom pairs are enriched with values originating from quantum chemistry calculations. A random forest machine learning algorithm is applied to model 10 different properties and biological activities based on different molecular representations, and it is evaluated via repeated cross-validation. The predictive power of modified atom pairs, quantum atom pairs, are compared to the predictive powers of traditional molecular representations known and widely applied in cheminformatics. The root mean squared error (RMSE), , area under the receiver operating characteristic curve (AUC) and balanced accuracy were used to evaluate the predictive power of the applied molecular representations. Research has shown that while performing regression tasks, quantum atom pairs provide better fits to the data than do their precursors.
在以下研究中,对传统原子对的一种新的改进方法进行了研究。这些原子对通过源自量子化学计算的值得到了丰富。应用随机森林机器学习算法基于不同的分子表示对10种不同的性质和生物活性进行建模,并通过重复交叉验证对其进行评估。将改进后的原子对(量子原子对)的预测能力与化学信息学中已知且广泛应用的传统分子表示的预测能力进行比较。使用均方根误差(RMSE)、接收器操作特征曲线下的面积(AUC)和平衡准确率来评估所应用分子表示的预测能力。研究表明,在执行回归任务时,量子原子对比其前身能更好地拟合数据。