Suppr超能文献

阳离子在通过逆水煤气变换反应将一氧化碳转化为二氧化碳过程中稳定氢自由基的关键作用。

Key Role of Cations in Stabilizing Hydrogen Radicals for CO-to-CO Conversion via a Reverse Water-Gas Shift Reaction.

作者信息

Zhao Ruijuan, Li Lei, Wu Qianbao, Li Qing, Cui Chunhua

机构信息

Molecular Electrochemistry Laboratory, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China.

出版信息

J Phys Chem Lett. 2024 Feb 22;15(7):1914-1920. doi: 10.1021/acs.jpclett.4c00005. Epub 2024 Feb 12.

Abstract

Electrochemically converting CO into valuable chemicals and fuels in acidic media is argued as a promising energy- and carbon-efficient route. Although several key roles of alkali cations have been unveiled, the alkali cation trends for CO reduction remain largely elusive. With decreasing cation size from Cs to Li, here we show that the apparent proton diffusion coefficient in 3.0 M Li is tens-fold lower than in 3.0 M K and 3.0 M Cs acidic electrolytes. Although Li has the strongest inhibition ability for proton transport, it acts the worst for both the CO-to-CO conversion and partial current density on Au catalysts. Unexpectedly, K with a higher proton transport performs the best for CO-to-CO conversion. We thus revisit the roles of alkali cations and find that hydrated K can stabilize hydrogen radicals benefiting CO conversion at the electrode interface while for Li this is not the case. This study proposes that cation-stabilized atomic hydrogen assists in activating CO via a reverse water-gas shift route under electrochemical conditions.

摘要

在酸性介质中将二氧化碳电化学转化为有价值的化学品和燃料被认为是一条有前景的能源高效和碳高效途径。尽管已经揭示了碱金属阳离子的几个关键作用,但二氧化碳还原的碱金属阳离子趋势在很大程度上仍然难以捉摸。随着阳离子尺寸从铯减小到锂,我们发现,在3.0 M锂酸性电解质中,表观质子扩散系数比在3.0 M钾和3.0 M铯酸性电解质中低几十倍。尽管锂对质子传输的抑制能力最强,但它在金催化剂上对二氧化碳到一氧化碳的转化和分电流密度的作用最差。出乎意料的是,质子传输能力较强的钾在二氧化碳到一氧化碳的转化中表现最佳。因此,我们重新审视了碱金属阳离子的作用,发现水合钾可以稳定氢自由基,有利于在电极界面进行二氧化碳转化,而锂则不然。本研究提出,阳离子稳定的原子氢在电化学条件下通过逆水煤气变换途径协助活化二氧化碳。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验