Suppr超能文献

使用下肢肌肉骨骼模型和长短时记忆神经网络进行步态意图预测。

Gait Intention Prediction Using a Lower-Limb Musculoskeletal Model and Long Short-Term Memory Neural Networks.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2024;32:822-830. doi: 10.1109/TNSRE.2024.3365201. Epub 2024 Feb 19.

Abstract

The prediction of gait motion intention is essential for achieving intuitive control of assistive devices and diagnosing gait disorders. To reduce the cost associated with using multimodal signals and signal processing, we proposed a novel method that integrates machine learning with musculoskeletal modelling techniques for the prediction of time-series joint angles, using only kinematic signals. Additionally, we hypothesised that a stacked long short-term memory (LSTM) neural network architecture can perform the task without relying on any ahead-of-motion features typically provided by electromyography signals. Optical cameras and inertial measurement unit (IMU) sensors were used to track level gait kinematics. Joint angles were modelled using the musculoskeletal model. The optimal LSTM architecture in fulfilling the prediction task was determined. Joint angle predictions were performed for joints on the sagittal plane, benefiting from joint angle modelling using signals from optical cameras and IMU sensors. Our proposed method predicted the upcoming joint angles in the prediction time of 10 ms, with an averaged root mean square error of 5.3° and a coefficient of determination of 0.81. Moreover, in support of our hypothesis, the recurrent stacked LSTM network demonstrated its ability to predict intended motion accurately and efficiently in gait, outperforming two other neural network architectures: a feedforward MLP and a hybrid LSTM-MLP. The method paves the way for the development of a cost-effective, single-modal control system for assistive devices in gait rehabilitation.

摘要

步态运动意图的预测对于实现辅助设备的直观控制和诊断步态障碍至关重要。为了降低使用多模态信号和信号处理相关的成本,我们提出了一种新的方法,该方法将机器学习与肌肉骨骼建模技术相结合,仅使用运动信号来预测时间序列关节角度。此外,我们假设堆叠式长短时记忆(LSTM)神经网络架构可以在不依赖肌电图信号通常提供的超前运动特征的情况下完成任务。我们使用光学摄像机和惯性测量单元(IMU)传感器来跟踪水平步态运动学。使用肌肉骨骼模型对关节角度进行建模。确定了在满足预测任务的最佳 LSTM 架构。使用来自光学摄像机和 IMU 传感器的信号对矢状面关节进行关节角度预测,从而受益于关节角度建模。我们提出的方法可以在 10ms 的预测时间内预测即将到来的关节角度,平均均方根误差为 5.3°,决定系数为 0.81。此外,为了支持我们的假设,递归堆叠式 LSTM 网络展示了其在步态中准确有效地预测预期运动的能力,优于另外两种神经网络架构:前馈 MLP 和混合 LSTM-MLP。该方法为开发用于步态康复的成本效益型单模态辅助设备控制系统铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验