Hossain Md Sanzid Bin, Dranetz Joseph, Choi Hwan, Guo Zhishan
IEEE J Biomed Health Inform. 2022 Aug;26(8):3906-3917. doi: 10.1109/JBHI.2022.3165383. Epub 2022 Aug 11.
Measurement of human body movement is an essential step in biomechanical analysis. The current standard for human motion capture systems uses infrared cameras to track reflective markers placed on a subject. While these systems can accurately track joint kinematics, the analyses are spatially limited to the lab environment. Though Inertial Measurement Units (IMUs) can eliminate these spatial limitations, those systems are impractical for use in daily living due to the need for many sensors, typically one per body segment. Due to the need for practical and accurate estimation of joint kinematics, this study implements a reduced number of IMU sensors and employs a machine learning algorithm to map sensor data to joint angles. Our developed algorithm estimates hip, knee, and ankle angles in the sagittal plane using two shoe-mounted IMU sensors in different practical walking conditions: treadmill, overground, stair, and slope conditions. Specifically, we propose five deep learning networks that use combinations of Convolutional Neural Networks (CNN) and Gated Recurrent Unit (GRU) based Recurrent Neural Networks (RNN) as base learners for our framework. Using those five baseline models, we propose a novel framework, DeepBBWAE-Net, that implements ensemble techniques such as bagging, boosting, and weighted averaging to improve kinematic predictions. DeepBBWAE-Net predicts joint kinematics for the three joint angles for each of the walking conditions with a Root Mean Square Error (RMSE) 6.93-29.0% lower than the base models individually. This is the first study that uses a reduced number of IMU sensors to estimate kinematics in multiple walking environments.
人体运动测量是生物力学分析中的关键步骤。当前人体运动捕捉系统的标准是使用红外摄像机来跟踪放置在受试者身上的反光标记。虽然这些系统能够精确跟踪关节运动学,但分析在空间上仅限于实验室环境。尽管惯性测量单元(IMU)可以消除这些空间限制,但由于需要许多传感器(通常每个身体部位一个),这些系统在日常生活中并不实用。由于需要对关节运动学进行实用且准确的估计,本研究采用了数量减少的IMU传感器,并运用机器学习算法将传感器数据映射到关节角度。我们开发的算法在不同的实际行走条件下(跑步机、地面行走、楼梯和斜坡条件),使用两个安装在鞋子上的IMU传感器来估计矢状面内的髋、膝和踝关节角度。具体而言,我们提出了五个深度学习网络,它们使用卷积神经网络(CNN)和基于门控循环单元(GRU)的循环神经网络(RNN)的组合作为我们框架的基础学习器。使用这五个基线模型,我们提出了一个新颖的框架DeepBBWAE-Net,该框架实现了诸如装袋、提升和加权平均等集成技术来改善运动学预测。DeepBBWAE-Net在每种行走条件下对三个关节角度的关节运动学进行预测,其均方根误差(RMSE)比单个基础模型低6.93 - 29.0%。这是第一项使用数量减少的IMU传感器来估计多种行走环境中运动学的研究。