Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China.
University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
J Am Chem Soc. 2024 Feb 21;146(7):4741-4751. doi: 10.1021/jacs.3c12247. Epub 2024 Feb 12.
G-quadruplexes (G4s) are noncanonical nucleic acid secondary structures with diverse topological features and biological roles. Human telomeric (Htelo) overhangs consisting of TTAGGG repeats can fold into G4s that adopt different topologies under physiological conditions. These G4s are potential targets for anticancer drugs. Despite intensive research, the existence and topology of G4s at Htelo overhangs in vivo are still unclear because there is no method to distinguish and quantify the topology of Htelo overhangs with native lengths that can form more than three tandem G4s in living cells. Herein, we present a novel F chemical shift fingerprinting technique to identify and quantify the topology of the Htelo overhangs up to five G-quadruplexes (G4s) and 120 nucleotides long both in vitro and in living cells. Our results show that longer overhang sequences tend to form stable G4s at the 5'- and 3'-ends, while the interior G4s are dynamic and "sliding" along the sequence, with TTA or 1-3 TTAGGG repeats as a linker. Each G4 in the longer overhang is conformationally heterogeneous, but the predominant ones are hybrid-2, two- or three-tetrad antiparallel, and hybrid-1 at the 5'-terminal, interior, and 3'-terminal, respectively. Additionally, we observed a distinct behavior of different lengths of telomeric sequences in living cells, suggesting that the overhang length and protein accessibility are related to its function. This technique provides a powerful tool for quickly identifying the folding topology and relative population of long Htelo overhangs, which may provide valuable insights into telomere functionality and be beneficial for structure-based anticancer drug development targeting G4s.
G-四链体(G4s)是具有多种拓扑特征和生物学功能的非经典核酸二级结构。人类端粒(Htelo)的突出端由 TTAGGG 重复组成,可以在生理条件下折叠成不同拓扑结构的 G4s。这些 G4s 是潜在的抗癌药物靶点。尽管进行了广泛的研究,但体内 Htelo 突出端的 G4s 的存在和拓扑结构仍然不清楚,因为没有一种方法可以区分和定量具有天然长度的 Htelo 突出端的拓扑结构,而这种长度可以在活细胞中形成三个以上的串联 G4s。在此,我们提出了一种新的 F 化学位移指纹图谱技术,用于鉴定和定量体外和活细胞中长达 5 个 G4s 和 120 个核苷酸的 Htelo 突出端的拓扑结构。我们的结果表明,较长的突出序列倾向于在 5'和 3'端形成稳定的 G4s,而内部 G4s 是动态的,并沿着序列“滑动”,TTA 或 1-3 个 TTAGGG 重复作为连接物。较长突出端的每个 G4 构象都是异质的,但主要的是 5'端的混合-2、二或三-四联体反平行和混合-1,内部和 3'端。此外,我们在活细胞中观察到不同长度的端粒序列的明显行为,这表明突出端的长度和蛋白质可及性与其功能有关。该技术为快速鉴定长 Htelo 突出端的折叠拓扑结构和相对丰度提供了有力的工具,这可能为端粒功能提供有价值的见解,并有助于基于结构的针对 G4s 的抗癌药物开发。