Suppr超能文献

帕金森病患者蒙特利尔认知评估表现的比较:年龄和教育程度调整后的临界值与机器学习

Comparing Montreal Cognitive Assessment Performance in Parkinson's Disease Patients: Age- and Education-Adjusted Cutoffs vs. Machine Learning.

作者信息

Baek Kyeongmin, Kim Young Min, Na Han Kyu, Lee Junki, Shin Dong Ho, Heo Seok-Jae, Chung Seok Jong, Kim Kiyong, Lee Phil Hyu, Sohn Young H, Yoon Jeehee, Kim Yun Joong

机构信息

Department of Computer Engineering, Hallym University, Chuncheon, Korea.

Department of Neurology, Yonsei University College of Medicine, Seoul, Korea.

出版信息

J Mov Disord. 2024 Apr;17(2):171-180. doi: 10.14802/jmd.23271. Epub 2024 Feb 13.

Abstract

OBJECTIVE

The Montreal Cognitive Assessment (MoCA) is recommended for general cognitive evaluation in Parkinson's disease (PD) patients. However, age- and education-adjusted cutoffs specifically for PD have not been developed or systematically validated across PD cohorts with diverse education levels.

METHODS

In this retrospective analysis, we utilized data from 1,293 Korean patients with PD whose cognitive diagnoses were determined through comprehensive neuropsychological assessments. Age- and education-adjusted cutoffs were formulated based on 1,202 patients with PD. To identify the optimal machine learning model, clinical parameters and MoCA domain scores from 416 patients with PD were used. Comparative analyses between machine learning.

METHODS

and different cutoff criteria were conducted on an additional 91 consecutive patients with PD.

RESULTS

The cutoffs for cognitive impairment decrease with increasing age within the same education level. Similarly, lower education levels within the same age group correspond to lower cutoffs. For individuals aged 60-80 years, cutoffs were set as follows: 25 or 24 years for those with more than 12 years of education, 23 or 22 years for 10-12 years, and 21 or 20 years for 7-9 years. Comparisons between age- and education-adjusted cutoffs and the machine learning method showed comparable accuracies. The cutoff method resulted in a higher sensitivity (0.8627), whereas machine learning yielded higher specificity (0.8250).

CONCLUSION

Both the age- and education-adjusted cutoff.

METHODS

and machine learning.

METHODS

demonstrated high effectiveness in detecting cognitive impairment in PD patients. This study highlights the necessity of tailored cutoffs and suggests the potential of machine learning to improve cognitive assessment in PD patients.

摘要

目的

蒙特利尔认知评估量表(MoCA)被推荐用于帕金森病(PD)患者的一般认知评估。然而,尚未针对PD患者制定专门的年龄和教育程度调整后的临界值,也未在不同教育水平的PD队列中进行系统验证。

方法

在这项回顾性分析中,我们使用了1293例韩国PD患者的数据,这些患者的认知诊断通过全面的神经心理学评估确定。基于1202例PD患者制定了年龄和教育程度调整后的临界值。为了确定最佳机器学习模型,使用了416例PD患者的临床参数和MoCA领域得分。对另外91例连续的PD患者进行了机器学习与不同临界值标准之间的比较分析。

结果

在相同教育水平下,认知障碍的临界值随年龄增加而降低。同样,在同一年龄组中,教育水平较低对应较低的临界值。对于60 - 80岁的个体,临界值设定如下:教育年限超过12年的为25或24分,10 - 12年的为23或22分,7 - 9年的为21或20分。年龄和教育程度调整后的临界值与机器学习方法之间的比较显示出相当的准确性。临界值方法具有更高的敏感性(0.8627),而机器学习具有更高的特异性(0.8250)。

结论

年龄和教育程度调整后的临界值方法以及机器学习方法在检测PD患者认知障碍方面均显示出高效性。本研究强调了定制临界值的必要性,并表明机器学习在改善PD患者认知评估方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ada/11082615/6cdbef46aff8/jmd-23271f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验