The School of Computer Science and Technology, Anhui University, Hefei 230601, People's Republic of China.
Phys Med Biol. 2024 Feb 13;69(4). doi: 10.1088/1361-6560/ad2014.
. Chest x-ray image representation and learning is an important problem in computer-aided diagnostic area. Existing methods usually adopt CNN or Transformers for feature representation learning and focus on learning effective representations for chest x-ray images. Although good performance can be obtained, however, these works are still limited mainly due to the ignorance of mining the correlations of channels and pay little attention on the local context-aware feature representation of chest x-ray image.. To address these problems, in this paper, we propose a novel spatial-channel high-order attention model (SCHA) for chest x-ray image representation and diagnosis. The proposed network architecture mainly contains three modules, i.e. CEBN, SHAM and CHAM. To be specific, firstly, we introduce a context-enhanced backbone network by employing multi-head self-attention to extract initial features for the input chest x-ray images. Then, we develop a novel SCHA which contains both spatial and channel high-order attention learning branches. For the spatial branch, we develop a novel local biased self-attention mechanism which can capture both local and long-range global dependences of positions to learn rich context-aware representation. For the channel branch, we employ Brownian Distance Covariance to encode the correlation information of channels and regard it as the image representation. Finally, the two learning branches are integrated together for the final multi-label diagnosis classification and prediction.. Experiments on the commonly used datasets including ChestX-ray14 and CheXpert demonstrate that our proposed SCHA approach can obtain better performance when comparing many related approaches.. This study obtains a more discriminative method for chest x-ray classification and provides a technique for computer-aided diagnosis.
. 胸部 X 射线图像表示与学习是计算机辅助诊断领域的一个重要问题。现有的方法通常采用 CNN 或 Transformer 进行特征表示学习,重点是学习胸部 X 射线图像的有效表示。虽然可以获得良好的性能,但是这些工作仍然主要受到忽视挖掘通道相关性的限制,并且对胸部 X 射线图像的局部上下文感知特征表示关注较少。. 为了解决这些问题,本文提出了一种用于胸部 X 射线图像表示和诊断的新颖的空间-通道高阶注意力模型(SCHA)。所提出的网络架构主要包含三个模块,即 CEBN、SHAM 和 CHAM。具体来说,首先,我们引入了一种上下文增强的骨干网络,通过使用多头自注意力来提取输入胸部 X 射线图像的初始特征。然后,我们开发了一种新颖的 SCHA,它包含空间和通道高阶注意力学习分支。对于空间分支,我们开发了一种新颖的局部偏置自注意力机制,可以捕获位置的局部和远程全局依赖关系,以学习丰富的上下文感知表示。对于通道分支,我们采用布朗距离协方差来编码通道的相关性信息,并将其作为图像表示。最后,将两个学习分支集成在一起进行最终的多标签诊断分类和预测。. 在常用数据集(包括 ChestX-ray14 和 CheXpert)上的实验表明,与许多相关方法相比,我们提出的 SCHA 方法可以获得更好的性能。. 本研究为胸部 X 射线分类提供了一种更具判别力的方法,为计算机辅助诊断提供了一种技术。