Zhou Mingzhe, Li Jinbao, Guo Yahong
College of Electronic Engineering, Heilongjiang University, Harbin, China.
School of Economics and Management, East University of Heilongjiang, Harbin, China.
Quant Imaging Med Surg. 2025 Jul 1;15(7):6301-6325. doi: 10.21037/qims-2025-354. Epub 2025 Jun 30.
Gliomas, the most aggressive primary tumors in the central nervous system, are characterized by high morphological heterogeneity and diffusely infiltrating boundaries. Such complexity poses significant challenges for accurate segmentation in clinical practice. Although deep learning methods have shown promising results, they often struggle to achieve a satisfactory trade-off among precise boundary delineation, robust multi-scale feature representation, and computational efficiency, particularly when processing high-resolution three-dimensional (3D) magnetic resonance imaging (MRI) data. Therefore, the aim of this study is to develop a novel 3D segmentation framework that specifically addresses these challenges, thereby improving clinical utility in brain tumor analysis. To accomplish this, we propose a multi-level channel-spatial attention and light-weight scale-fusion network (MCSLF-Net), which integrates a multi-level channel-spatial attention mechanism (MCSAM) and a light-weight scale-fusion module. By strategically enhancing subtle boundary features while maintaining a compact network design, our approach seeks to achieve high accuracy in delineating complex glioma morphologies, reduce computational burden, and provide a more clinically feasible segmentation solution.
We propose MCSLF-Net, a network integrating two key components: (I) MCSAM: by strategically inserting a 3D channel-spatial attention module at critical semantic layers, the network progressively emphasizes subtle, infiltrative edges and small, easily overlooked contours. This avoids reliance on an additional edge detection branch while enabling fine-grained localization in ambiguous transitional regions. (II) Light-weight scale fusion unit (LSFU): leveraging depth-wise separable convolutions combined with multi-scale atrous (dilated) convolutions, LSFU enhances computational efficiency and adapts to varying feature requirements at different network depths. In doing so, it effectively captures small infiltrative lesions as well as extensive tumor areas. By coupling these two modules, MCSLF-Net balances global contextual information with local fine-grained features, simultaneously reducing the computational burden typically associated with 3D medical image segmentation.
Extensive experiments on the BraTS 2019, BraTS 2020, and BraTS 2021 datasets validated the effectiveness of our approach. On BraTS 2021, MCSLF-Net achieved a mean Dice similarity coefficient (DSC) of 0.8974 and a mean 95 percentile Hausdorff distance (HD95) of 2.52 mm. Notably, it excels in segmenting intricate transitional areas, including the enhancing tumor (ET) region and the tumor core (TC), thereby demonstrating superior boundary delineation and multi-scale feature fusion capabilities relative to existing methods.
These findings underscore the clinical potential of deploying multi-level channel-spatial attention and light-weight multi-scale fusion strategies in high-precision 3D glioma segmentation. By striking an optimal balance among boundary accuracy, multi-scale feature capture, and computational efficiency, the proposed MCSLF-Net offers a practical framework for further advancements in automated brain tumor analysis and can be extended to a range of 3D medical image segmentation tasks.
胶质瘤是中枢神经系统中最具侵袭性的原发性肿瘤,具有高度的形态异质性和弥漫性浸润边界。这种复杂性给临床实践中的精确分割带来了重大挑战。尽管深度学习方法已显示出有前景的结果,但它们在精确边界描绘、强大的多尺度特征表示和计算效率之间往往难以实现令人满意的权衡,尤其是在处理高分辨率三维(3D)磁共振成像(MRI)数据时。因此,本研究的目的是开发一种新颖的3D分割框架,专门应对这些挑战,从而提高脑肿瘤分析的临床实用性。为实现这一目标,我们提出了一种多级通道 - 空间注意力和轻量级尺度融合网络(MCSLF - Net),它集成了多级通道 - 空间注意力机制(MCSAM)和轻量级尺度融合模块。通过在保持紧凑网络设计的同时策略性地增强细微边界特征,我们的方法旨在在描绘复杂胶质瘤形态方面实现高精度,减轻计算负担,并提供更具临床可行性的分割解决方案。
我们提出了MCSLF - Net,这是一个集成了两个关键组件的网络:(I)MCSAM:通过在关键语义层策略性地插入一个3D通道 - 空间注意力模块,该网络逐步强调细微的浸润边缘和小的、容易被忽视的轮廓。这避免了对额外边缘检测分支的依赖,同时在模糊的过渡区域实现细粒度定位。(II)轻量级尺度融合单元(LSFU):利用深度可分离卷积与多尺度空洞(扩张)卷积相结合,LSFU提高了计算效率,并适应不同网络深度的不同特征要求。这样做,它有效地捕获了小的浸润性病变以及广泛的肿瘤区域。通过耦合这两个模块,MCSLF - Net在全局上下文信息与局部细粒度特征之间取得平衡,同时减少了通常与3D医学图像分割相关的计算负担。
在BraTS 2019、BraTS 2020和BraTS 2021数据集上进行的广泛实验验证了我们方法的有效性。在BraTS 2021上,MCSLF - Net实现了平均骰子相似系数(DSC)为0.8974,平均第95百分位数豪斯多夫距离(HD95)为2.52毫米。值得注意的是,它在分割复杂的过渡区域方面表现出色,包括强化肿瘤(ET)区域和肿瘤核心(TC),从而相对于现有方法展示了卓越的边界描绘和多尺度特征融合能力。
这些发现强调了在高精度3D胶质瘤分割中部署多级通道 - 空间注意力和轻量级多尺度融合策略的临床潜力。通过在边界准确性、多尺度特征捕获和计算效率之间取得最佳平衡,所提出的MCSLF - Net为自动脑肿瘤分析的进一步发展提供了一个实用框架,并且可以扩展到一系列3D医学图像分割任务。