Suppr超能文献

随机试验与非随机模拟之间的设计差异及结果变异:RCT - DUPLICATE数据的荟萃分析

Design differences and variation in results between randomised trials and non-randomised emulations: meta-analysis of RCT-DUPLICATE data.

作者信息

Heyard Rachel, Held Leonhard, Schneeweiss Sebastian, Wang Shirley V

机构信息

Center for Reproducible Science, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland.

Division of Pharmacoepidemiology, Brigham and Womems Hospital Harvard Medical School, Boston, Massachusetts, USA.

出版信息

BMJ Med. 2024 Feb 5;3(1):e000709. doi: 10.1136/bmjmed-2023-000709. eCollection 2024.

Abstract

OBJECTIVE

To explore how design emulation and population differences relate to variation in results between randomised controlled trials (RCT) and non-randomised real world evidence (RWE) studies, based on the RCT-DUPLICATE initiative (Randomised, Controlled Trials Duplicated Using Prospective Longitudinal Insurance Claims: Applying Techniques of Epidemiology).

DESIGN

Meta-analysis of RCT-DUPLICATE data.

DATA SOURCES

Trials included in RCT-DUPLICATE, a demonstration project that emulated 32 randomised controlled trials using three real world data sources: Optum Clinformatics Data Mart, 2004-19; IBM MarketScan, 2003-17; and subsets of Medicare parts A, B, and D, 2009-17.

ELIGIBILITY CRITERIA FOR SELECTING STUDIES

Trials where the primary analysis resulted in a hazard ratio; 29 RCT-RWE study pairs from RCT-DUPLICATE.

RESULTS

Differences and variation in effect sizes between the results from randomised controlled trials and real world evidence studies were investigated. Most of the heterogeneity in effect estimates between the RCT-RWE study pairs in this sample could be explained by three emulation differences in the meta-regression model: treatment started in hospital (which does not appear in health insurance claims data), discontinuation of some baseline treatments at randomisation (which would have been an unusual care decision in clinical practice), and delayed onset of drug effects (which would be under-reported in real world clinical practice because of the relatively short persistence of the treatment). Adding the three emulation differences to the meta-regression reduced heterogeneity from 1.9 to almost 1 (absence of heterogeneity).

CONCLUSIONS

This analysis suggests that a substantial proportion of the observed variation between results from randomised controlled trials and real world evidence studies can be attributed to differences in design emulation.

摘要

目的

基于RCT-DUPLICATE计划(利用前瞻性纵向保险理赔重复进行随机对照试验:应用流行病学技术),探讨设计模拟和人群差异如何与随机对照试验(RCT)和非随机真实世界证据(RWE)研究结果的差异相关。

设计

对RCT-DUPLICATE数据进行荟萃分析。

数据来源

RCT-DUPLICATE中纳入的试验,这是一个示范项目,使用三个真实世界数据源模拟了32项随机对照试验:Optum临床信息数据集市(2004 - 2019年);IBM MarketScan(2003 - 2017年);以及医疗保险A、B和D部分的子集(2009 - 2017年)。

选择研究的纳入标准

主要分析得出风险比的试验;来自RCT-DUPLICATE的29对RCT-RWE研究。

结果

研究了随机对照试验结果与真实世界证据研究结果之间的差异和效应大小的变化。该样本中RCT-RWE研究对之间效应估计的大多数异质性可以通过荟萃回归模型中的三个模拟差异来解释:在医院开始治疗(这在医疗保险理赔数据中未出现)、随机分组时一些基线治疗的中断(这在临床实践中是一个不寻常的护理决定)以及药物效应的延迟发作(由于治疗持续时间相对较短,这在真实世界临床实践中报告不足)。将这三个模拟差异添加到荟萃回归中可将异质性从1.9降低到几乎为1(无异质性)。

结论

该分析表明,随机对照试验结果与真实世界证据研究结果之间观察到的很大一部分差异可归因于设计模拟的差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/584f/10860009/a9dfc75bf9ab/bmjmed-2023-000709f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验