Dutta Soma, Husain Sajid, Kumar Prabhat, Gupta Nanhe Kumar, Chaudhary Sujeet, Svedlindh Peter, Barman Anjan
Department of Condensed Matter and Materials Physics, S. N. Bose National Centre for Basic Sciences, Block JD, Sector-III, Salt Lake, Kolkata 700 106, India.
Department of Materials Science and Engineering, Uppsala University, Box 35, SE-751 03 Uppsala, Sweden.
Nanoscale. 2024 Feb 22;16(8):4105-4113. doi: 10.1039/d3nr06197c.
Two-dimensional transition metal dichalcogenides (TMDs) have drawn immense interest due to their strong spin-orbit coupling and unique layer number dependence in response to spin-valley coupling. This leads to the possibility of controlling the spin degree of freedom of the ferromagnet (FM) in thin film heterostructures and may prove to be of interest for next-generation spin-based devices. Here, we experimentally demonstrate the odd-even layer dependence of WS nanolayers by measurements of the ultrafast magnetization dynamics in WS/CoFeB thin film heterostructures by using time-resolved Kerr magnetometry. The fluence (photon energy per unit area) dependent magnetic damping () reveals the existence of broken symmetry and the dominance of inter- and intraband scattering for odd and even layers of WS, respectively. The higher demagnetization time, , in 3 and 5 layers of WS is indicative of the interaction between spin-orbit and spin-valley coupling due to the broken symmetry. The lower in even layers as compared to the bare FM layer suggests the presence of a spin transport. By correlating and , we pinpointed the dominant mechanisms of ultrafast demagnetization. The mechanism changes from spin transport to spin-flip scattering for even layers of WS with increasing fluence. A fundamental understanding of the two-dimensional material and its odd-even layer dependence at ultrashort timescales provides valuable information for designing next-generation spin-based devices.
二维过渡金属二硫属化物(TMDs)因其强自旋轨道耦合以及在自旋谷耦合方面独特的层数依赖性而引起了广泛关注。这使得在薄膜异质结构中控制铁磁体(FM)的自旋自由度成为可能,并且可能对下一代自旋基器件具有重要意义。在此,我们通过使用时间分辨克尔磁强计测量WS/CoFeB薄膜异质结构中的超快磁化动力学,从实验上证明了WS纳米层的奇偶层依赖性。与能量密度(单位面积的光子能量)相关的磁阻尼()分别揭示了WS奇偶层对称性破缺的存在以及带间和带内散射的主导地位。WS的3层和5层中较高的退磁时间表明由于对称性破缺,自旋轨道与自旋谷耦合之间存在相互作用。与裸FM层相比,偶数层中较低的表明存在自旋输运。通过关联和,我们确定了超快退磁的主要机制。随着能量密度的增加,偶数层WS的机制从自旋输运转变为自旋翻转散射。在超短时间尺度上对二维材料及其奇偶层依赖性的基本理解为设计下一代自旋基器件提供了有价值的信息。