Suppr超能文献

Automated potential energy surface development and comprehensive dynamics for the F + CH3NH2 reaction.

作者信息

Szűcs Tímea, Czakó Gábor

机构信息

MTA-SZTE Lendület Computational Reaction Dynamics Research Group, Interdisciplinary Excellence Centre and Department of Physical Chemistry and Materials Science, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary.

出版信息

J Chem Phys. 2024 Feb 14;160(6). doi: 10.1063/5.0191398.

Abstract

This work is an extensive investigation of the F + CH3NH2 reaction dynamics using a newly-developed potential energy surface (PES). The full-dimensional spin-orbit (SO) corrected (MRCI+Q/aug-cc-pwCVDZ) PES is developed by the Robosurfer program package and the ManyHF method is used in order to fix the Hartree-Fock (HF) convergence issues in the entrance channel. On the surface, retrieved by the fitting of the iteratively extended set of the ManyHF-CCSD(T)-F12a/triple-zeta-quality and SO-corrected energy points, quasi-classical trajectory (QCT) simulations are run. By analyzing the opacity functions and integral cross sections (ICSs) of six reaction channels, the dynamics of the two most reactive hydrogen-abstraction reactions resulting in HF + CH2NH2/CH3NH products are selected for a thorough examination. Despite the statistically and thermodynamically expected results, the kinetically preferred amino hydrogen-abstraction is the dominant mechanism at low collision energies. The initial attack angle and scattering angle distributions are investigated as well. The post-reaction energy distributions show that the collision energy mostly converts into the translational energy of the products, while the reaction energy excites the vibration of the products. The computed vibrationally resolved rotational distributions and vibrational state distributions of the HF product are compared to experimental data, and the theory and experiment are found to be in good agreement.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验