Raissa Albuquerque de Deus, DDS, MSc, Department of Operative Dentistry and Dental Materials, School of Dentistry, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.
Lais Rani Sales Oliveira, DDS, MSc, PhD, Department of Operative Dentistry and Dental Materials, School of Dentistry, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.
Oper Dent. 2024 Mar 1;49(2):136-156. doi: 10.2341/23-025-L.
To evaluate the effect of the different radiant exposures from a multipeak light curing unit on the physical and mechanical properties of flowable and high-viscosity bulk-fill resin-based composites (RBC).
Five flowable bulk-fill RBCs (Tetric N-Flow Bulk-fill, Ivoclar Vivadent; Filtek Bulk Fill Flow, 3M Oral Care; Opus Bulk Fill Flow APS, FGM; Admira Fusion x-base, Voco and; and SDR Plus Bulk Fill Flowable, Dentsply Sirona) and five high-viscosity bulk-fill RBCs (Tetric N-Ceram Bulk-fill, Ivoclar Vivadent; Filtek One Bulk Fill, 3M Oral Care; Opus Bulk Fill APS, FGM; Admira Fusion x-tra, Voco; and SonicFill 2, Kerr) were photo-cured using a VALO Cordless light (Ultradent) for 10, 20, and 40 seconds at an irradiance of 1200, 800, or 400 mW/cm2, resulting in the delivery of 4, 8, 12, 16, 24, 32, or 48 J/cm2. Post-gel shrinkage (Shr) was calculated using strain-gauge test. The degree of conversion (DC, %) was calculated using FTIR. Knoop hardness (KH, N/mm2) and elastic modulus (E, MPa) were measured at the top and bottom surfaces. Logarithmic regressions between the radiant exposures and mechanical properties were calculated. Radiodensity was calculated using digital radiographs. Data of Shr and radiodensity were analyzed using two-way analysis of variance (ANOVA), and the DC, KH, and E data were analyzed with two-way ANOVA using split-plot repeated measurement tests followed by the Tukey test (a = 0.05).
Delivering higher radiant exposures produced higher Shr values (p<0.001) and higher DC values (R2=0.808-0.922; R2=0.648-0.914, p<0.001), KH (R2=0.707-0.952; R2=0.738-0.919; p<0.001), and E (R2=0.501-0.925; R2=0.823-0.919; p<0.001) values for the flowable and high-viscosity RBCs respectively. Lower KH, E and Shr were observed for the flowable bulk-fill RBCs. All bulk-fill RBCs had a radiopacity level greater than the 4-mm thick aluminum step wedge. The radiant exposure did not affect the radiopacity.
The Shr, DC, KH, and E values were highly correlated to the radiant exposure delivered to the RBCs. The combination of the higher irradiance for longer exposure time that resulted in radiant exposure between 24 J/cm2 to 48 J/cm2 produced better results than delivering 400 mW/cm2 for 40 s (16 J/cm2), and 800 mW/cm2 for 20 seconds (16 J/cm2) or 1200 mW/cm2 for 10 seconds (12 J/cm2). All the bulk-fill RBCs were sufficiently radiopaque compared to 4 mm of aluminum.
评估多峰光固化器的不同辐射暴露量对流动型和高粘度块状填充型树脂基复合材料(RBC)的物理和机械性能的影响。
使用 VALO 无绳灯(Ultradent)对 5 种流动型块状填充 RBC(Tetric N-Flow Bulk-fill,Ivoclar Vivadent;Filtek Bulk Fill Flow,3M Oral Care;Opus Bulk Fill Flow APS,FGM;Admira Fusion x-base,Voco 和 SDR Plus Bulk Fill Flowable,Dentsply Sirona)和 5 种高粘度块状填充 RBC(Tetric N-Ceram Bulk-fill,Ivoclar Vivadent;Filtek One Bulk Fill,3M Oral Care;Opus Bulk Fill APS,FGM;Admira Fusion x-tra,Voco 和 SonicFill 2,Kerr)进行光固化,辐照度分别为 1200、800 或 400 mW/cm2,辐射时间分别为 10、20 和 40 秒,从而实现 4、8、12、16、24、32 或 48 J/cm2 的剂量传递。使用应变计试验计算后凝胶收缩(Shr)。通过傅里叶变换红外光谱(FTIR)计算转化率(DC,%)。在顶部和底部表面测量维氏硬度(KH,N/mm2)和弹性模量(E,MPa)。计算了辐射暴露量与机械性能之间的对数回归。使用数字射线照相术计算放射密度。使用双向方差分析(ANOVA)分析 Shr 和放射密度数据,使用两因素方差分析(ANOVA)使用分块重复测量测试分析 DC、KH 和 E 数据,随后进行 Tukey 检验(a=0.05)。
传递更高的辐射暴露量会产生更高的 Shr 值(p<0.001)和更高的 DC 值(R2=0.808-0.922;R2=0.648-0.914,p<0.001)、KH(R2=0.707-0.952;R2=0.738-0.919;p<0.001)和 E(R2=0.501-0.925;R2=0.823-0.919;p<0.001)值,分别用于流动型和高粘度 RBC。流动型块状填充 RBC 的 KH、E 和 Shr 值较低。所有块状填充 RBC 的射线不透明度水平均大于 4 毫米厚的铝阶跃楔形物。辐射暴露量不会影响射线不透明度。
Shr、DC、KH 和 E 值与传递给 RBC 的辐射暴露量高度相关。更高的辐照度与更长的曝光时间相结合,产生的辐射暴露量在 24 J/cm2 至 48 J/cm2 之间,优于传递 400 mW/cm2 40 秒(16 J/cm2)、800 mW/cm2 20 秒(16 J/cm2)或 1200 mW/cm2 10 秒(12 J/cm2)。与 4 毫米厚的铝相比,所有块状填充 RBC 的射线不透明度都足够高。