Desmedt J E
Cent Nerv Syst Trauma. 1985 Fall;2(3):169-86. doi: 10.1089/cns.1985.2.169.
Electronic averaging makes it possible to analyze somatosensory evoked potentials (SEP) recorded noninvasively from the body surface in man. With noncephalic reference recording, the SEP discloses a series of components that are volume-conducted from distinct open-field generators with a geometry adequate to produce external potential gradients over the head. Farfields are brief positive dips with widespread distribution that present stationary onset and peak latencies all over. They reflect the propagated afferent volley in axons bundles, thus in brachial plexus (P9), dorsal column (P11), and medial lemniscus (P14). Somehow unexpectedly, SEP traces also disclose a widespread prolonged farfield N18 of negative polarity that reflects neural generators in the brainstem below thalamus. Nearfields can be positive or negative, and they reflect neural generators located less than about 50 mm from the electrode. They are influenced to a greater extent by the position of the recording electrodes. For example, neck electrodes can follow the upward propagation of the dorsal column volley (N11), whereas scalp electrodes can map out the distinct contralateral parietal (N20, P27) or frontal (P22, N30) cortical generators. Electrodes around the neck also disclose the posterior N13 and anterior P13 responses that reflect the two sides of the same dorsal horn generator with a horizontal axis. Bit-mapped topographic color imaging of potential fields provides detailed data on time and spatial features of the different SEP neural generators. SEP neuromonitoring can use these results to titrate input to spinal cord (nerve potentials or P9 farfield), spinal generators (N11 nearfield or N13-P13 nearfield in posterior-to-anterior neck montages), brainstem generators (P14 farfield and N18 response), or cortical generators (parietal N20-P27 or frontal P22-N30). The central somatosensory conduction time can be titrated from the spinal entry and cortical arrival times measured in neck and scalp recordings.
电子平均技术使得分析从人体体表无创记录的体感诱发电位(SEP)成为可能。采用非头部参考记录时,SEP会显示出一系列成分,这些成分是由不同的开放场发生器进行容积传导的,其几何形状足以在头部产生外部电位梯度。远场是分布广泛的短暂正波谷,其起始和峰值潜伏期在各处都是固定的。它们反映了轴突束中传入冲动的传播,进而反映了臂丛神经(P9)、背柱(P11)和内侧丘系(P14)中的情况。不知为何出人意料的是,SEP波形还显示出一个分布广泛的延长的负极性远场N18,它反映了丘脑以下脑干中的神经发生器。近场可以是正性的或负性的,它们反映的是距离电极小于约50毫米的神经发生器。它们在更大程度上受记录电极位置的影响。例如,颈部电极可以追踪背柱冲动的向上传播(N11),而头皮电极可以描绘出不同的对侧顶叶(N20、P27)或额叶(P22、N30)皮质发生器。颈部周围的电极还能显示出反映同一背角发生器水平轴两侧情况的后部N13和前部P13反应。电位场的位图地形彩色成像提供了关于不同SEP神经发生器的时间和空间特征的详细数据。SEP神经监测可以利用这些结果来调整对脊髓的输入(神经电位或P9远场)、脊髓发生器(N11近场或后-前颈部组合中的N13 - P13近场)、脑干发生器(P14远场和N18反应)或皮质发生器(顶叶N20 - P27或额叶P22 - N30)。中枢体感传导时间可以根据在颈部和头皮记录中测量的脊髓传入时间和皮质到达时间来调整。