Suppr超能文献

[非头部参考能够避免人类躯体感觉诱发电位解释中的错误]

[Non-cephalic reference makes it possible to avoid errors in the interpretation of somatosensory evoked potentials in man].

作者信息

Desmedt J E

出版信息

Rev Electroencephalogr Neurophysiol Clin. 1984 Apr;13(4):349-66. doi: 10.1016/s0370-4475(84)80042-8.

Abstract

The validity of clinical tests with somatosensory evoked potentials (SEPs) relies on the montages chosen and on adequate interpretation making use of recent pathophysiological data. Only non-cephalic reference recordings can reliably identify the actual neural generators involved. Early SEPs include near-field (neck N11 and N13; parietal N20-P27-P45 and prerolandic P22-N30) and far-field (P9-P11-P14) components. Far fields diffuse in the volume conductor through a solid angle of 180 degrees downstream from the propagated dipole generator. P9 reflects the afferent volley at the brachial plexus, P11 the volley in the dorsal column of the spinal cord, and P14 reflects the volley in the medial lemniscus. Far fields have stationary latencies, but their voltage varies and is maximum downstream in the axis of the generator dipole. The spinal N11 shows a latency shift of 0.9 msec along the neck which allows dorsal column conduction to be estimated. Its dipole has a longitudinal axis. The N13 dipole is fixed and has a horizontal axis: the N13 phase reverses into a P13 at oesophageal (prevertebral) derivations. This N13-P13 spinal dipole produces no far field at the scalp. The cortical pre- and post-rolandic components can be studied with an earlobe reference, but not with a frontal reference which confounds the distinct generators. For spinal potentials, the cephalic (often frontal) reference still used in recent publications introduces major distortions. The algebraic addition of scalp far fields picked up at the front fabricates illegitimate components in such traces: the neck P9 becomes an "N9" of variable amplitude, the "N11" augmented by the (inverted) frontal P11 loses its latency shift characteristics, and an "N14" (whose generator is actually above the foramen magnum) superimposes on the legitimate spinal components. In general, the clinical use of hybrid montages mixing distinct components that can be distorted or delayed by a neurological lesion leads to severe errors of interpretation.

摘要

体感诱发电位(SEP)临床测试的有效性取决于所选的导联组合以及利用最新病理生理学数据进行的充分解读。只有非头部参考记录才能可靠地识别实际涉及的神经发生器。早期SEP包括近场(颈部N11和N13;顶叶N20 - P27 - P45和中央前回前P22 - N30)和远场(P9 - P11 - P14)成分。远场在容积导体中从传播的偶极发生器向下游以180度的立体角扩散。P9反映臂丛神经的传入冲动,P11反映脊髓背柱的冲动,P14反映内侧丘系的冲动。远场具有固定的潜伏期,但其电压会变化,并且在发生器偶极轴的下游最大。脊髓N11沿颈部显示0.9毫秒的潜伏期偏移,这使得可以估计背柱传导。其偶极具有纵轴。N13偶极是固定的,具有横轴:在食管(椎体前)导联中,N13相位反转成P13。这个N13 - P13脊髓偶极在头皮上不产生远场。中央前回和中央后回的皮质成分可以用耳垂参考进行研究,但不能用额叶参考,因为额叶参考会混淆不同的发生器。对于脊髓电位,近期出版物中仍使用的头部(通常是额叶)参考会引入重大失真。在前部采集的头皮远场的代数相加会在这些记录中产生非法成分:颈部P9变成幅度可变的“N9”,被(倒置的)额叶P11增强的“N11”失去其潜伏期偏移特征,并且一个“N14”(其发生器实际上在枕骨大孔上方)叠加在合法的脊髓成分上。一般来说,混合不同成分的混合导联组合的临床应用可能会因神经病变而扭曲或延迟,从而导致严重的解读错误。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验